基本模型没有变化,主要是调参,配置:

%WER     65%  下降到了     15%

后面再继续优化...

Graph compilation finish!
steps/decode.sh --nj 1 --cmd utils/run.pl exp/mono0/graph_tgpr data/waves_test exp/mono0/decode_waves_test
decode.sh: feature type is delta
steps/diagnostic/analyze_lats.sh --cmd utils/run.pl exp/mono0/graph_tgpr exp/mono0/decode_waves_test
steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_alignments.log
Overall, lattice depth (10,50,90-percentile)=(1,3,9) and mean=3.9
steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_lattice_depth_stats.log
score.sh works!
exp/mono0/decode_waves_test
%WER 15.00 [ 3 / 20, 2 ins, 1 del, 0 sub ] exp/mono0/decode_waves_test/wer_11

200_001_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.08665 over 118 frames.
200_001_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.24863 over 87 frames.
200_001_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.80181 over 121 frames.
200_001_004 Cappuccino no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.10243 over 83 frames.
200_001_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.09944 over 120 frames.
200_001_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.92891 over 116 frames.
200_001_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.0784 over 94 frames.
200_001_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.52974 over 46 frames.
200_001_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.06832 over 68 frames.
200_001_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.38154 over 73 frames.
200_002_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.87652 over 99 frames.
200_002_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.98032 over 85 frames.
200_002_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.24635 over 123 frames.
200_002_004 Cappuccino no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.10968 over 75 frames.
200_002_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.68037 over 117 frames.
200_002_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.34412 over 110 frames.
200_002_007
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.84015 over 64 frames.
200_002_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.53148 over 77 frames.
200_002_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -9.62339 over 51 frames.
200_002_010 thankyou

如何用kaldi做孤立词识别二的更多相关文章

  1. 如何用kaldi做孤立词识别-初版

    ---------------------------------------------------------------------------------------------------- ...

  2. 如何用kaldi做孤立词识别三

    这次wer由15%下降到0%了,后面跑更多的模型 LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepst ...

  3. 基于HTK语音工具包进行孤立词识别的使用教程

    选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...

  4. 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)

    最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...

  5. yesno孤立词识别kaldi脚本

    path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...

  6. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  7. 用深度学习做命名实体识别(二):文本标注工具brat

    本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apac ...

  8. 亲自动手用HTK实现YES NO孤立词识别

    很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...

  9. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

随机推荐

  1. labellmg的使用

    ---恢复内容开始--- 在powershell环境下进入到labelImg解压后的文件,我这里是D:\labelImg-master\labelImg-master 执行命令: pyrcc5 -o ...

  2. JavaSE基础知识(6)—异常和异常处理

    一.异常的理解及体系结构图 1.理解 异常:程序运行过程中发生的不正常现象.java中的错误: 语法错误 运行异常 逻辑错误 2.体系图 java程序在执行过程中所发生的异常分为两类: Error:J ...

  3. 1.为什么使用spring boot

    最近2年spring cloud微服务比较流行,Spring Cloud基于SpringBoot,为微服务体系开发中的架构问题提供了一整套的解决方案, 本文总结一下为什么要使用Spring boot, ...

  4. Vue中观察者模式的实现

    Vue中实现观察者模式的方法可以有三种: 1.v-on方法 exp: <div id='test'> <button v-on:event='functionName'>but ...

  5. linux 7安装telnet,设置telnet自启动,使用root telnet登录

    1.安装启动服务 # yum install telnet-server # yum install xinetd # systemctl enable xinetd.service # system ...

  6. Mac/Linux/Centos终端中上传文件到Linux云服务器

      1.mac上传文件到Linux服务器  scp 文件名 用户名@服务器ip:目标路径 如:scp /Users/test/testFile test@www.linuxidc.com:/test/ ...

  7. EasyPR源码剖析(4):车牌定位之Sobel算子定位

    一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: ...

  8. SqlSever 使用 CROSS APPLY 与 OUTER APPLY 连接查询

    前言 日常开发中遇到多表查询时,首先会想到 INNER JOIN 或 LEFT OUTER JOIN 等等,但是这两种查询有时候不能满足需求.比如,左表一条关联右表多条记录时,我需要控制右表的某一条或 ...

  9. Python3 使用pymysql链接MySQL数据库

    1,pymysql安装 pip install pymysql 2,pymysql使用 import pymysql 3,实例查询 import pymysql #获取一个数据库链接 #格式 主机地址 ...

  10. CommonsChunkPlugin VS SplitChunksPlugin

    等了好久终于等到你, webpack团队人员卧薪尝胆五个多月的时间终于带来的webpack4.0,个人觉得webpack4带来的最大优化便是对于懒加载块拆分的优化,删除了CommonsChunkPlu ...