基本模型没有变化,主要是调参,配置:

%WER     65%  下降到了     15%

后面再继续优化...

Graph compilation finish!
steps/decode.sh --nj 1 --cmd utils/run.pl exp/mono0/graph_tgpr data/waves_test exp/mono0/decode_waves_test
decode.sh: feature type is delta
steps/diagnostic/analyze_lats.sh --cmd utils/run.pl exp/mono0/graph_tgpr exp/mono0/decode_waves_test
steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_alignments.log
Overall, lattice depth (10,50,90-percentile)=(1,3,9) and mean=3.9
steps/diagnostic/analyze_lats.sh: see stats in exp/mono0/decode_waves_test/log/analyze_lattice_depth_stats.log
score.sh works!
exp/mono0/decode_waves_test
%WER 15.00 [ 3 / 20, 2 ins, 1 del, 0 sub ] exp/mono0/decode_waves_test/wer_11

200_001_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.08665 over 118 frames.
200_001_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.24863 over 87 frames.
200_001_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.80181 over 121 frames.
200_001_004 Cappuccino no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.10243 over 83 frames.
200_001_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.09944 over 120 frames.
200_001_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.92891 over 116 frames.
200_001_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.0784 over 94 frames.
200_001_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.52974 over 46 frames.
200_001_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.06832 over 68 frames.
200_001_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.38154 over 73 frames.
200_002_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.87652 over 99 frames.
200_002_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.98032 over 85 frames.
200_002_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.24635 over 123 frames.
200_002_004 Cappuccino no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.10968 over 75 frames.
200_002_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.68037 over 117 frames.
200_002_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.34412 over 110 frames.
200_002_007
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.84015 over 64 frames.
200_002_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.53148 over 77 frames.
200_002_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -9.62339 over 51 frames.
200_002_010 thankyou

如何用kaldi做孤立词识别二的更多相关文章

  1. 如何用kaldi做孤立词识别-初版

    ---------------------------------------------------------------------------------------------------- ...

  2. 如何用kaldi做孤立词识别三

    这次wer由15%下降到0%了,后面跑更多的模型 LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepst ...

  3. 基于HTK语音工具包进行孤立词识别的使用教程

    选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...

  4. 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)

    最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...

  5. yesno孤立词识别kaldi脚本

    path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...

  6. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  7. 用深度学习做命名实体识别(二):文本标注工具brat

    本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apac ...

  8. 亲自动手用HTK实现YES NO孤立词识别

    很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...

  9. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

随机推荐

  1. Linux服务器文件和windows本机文件互传方法(本地文件上传Linux,Linux文件下载到本机)

    1.windows系统中下载XShell安装文件.下载地址:https://www.newasp.net/soft/384562.html 2.安装之后,新建会话输入远程linux的账号和密码. 3. ...

  2. adduser与useradd的区别

    问题:使用 useradd 创建用户,发现 /home 目录下没有自动创建关于用户的目录.所以做了一番调查研究 useradd是一个linux命令,但是它提供了很多参数在用户使用的时候根据自己的需要进 ...

  3. EasyUI ComboGrid 笔记(支持分页)

    业务要求: 下拉框做选择时需要展现多个字段供用户参考,由于内容可能会很多,故还需要考虑分页. 解决方案: 由于项目整体已经采用了EasyUI,在浏览了demo以后,初步考虑使用EasyUI的combo ...

  4. 数据如何输入输出_Spark

    1)输入:在Spark程序运行中,数据从外部数据空间(如分布式存储:textFile读取HDFS等,parallelize方法输入Scala集合或数据)输入Spark,数据进入Spark运行时数据空间 ...

  5. pg_dump 数据处理

    从数据库导出数据 -U 用户 -p 端口 -h 主机地址 -f 导出文件地址 -O 备份数据库结构和数据,不设置拥有者 -s  只导出数据库结构 最后是库名 (全部导出)pg_dump -U post ...

  6. Openssl asn1parse命令

    一.简介 asn1parse命令是一种用来诊断ASN.1结构的工具,也能用于从ASN1.1数据中提取数据 二.语法 openssl asn1parse [-inform PEM|DER] [-in f ...

  7. N2N windows下编译安装文件

    n2n安装 n2n原理编译版下载,可直接使用:windows下vpn客户端 n2n_v2_linux_x64 n2n_v2_Win32TAP网卡驱动 #linux环境编译yum install -y ...

  8. spring实现listener(转)

    博主说未经同意,不能转载,我这种小码农,他应该不会在乎 原创地址:http://blog.csdn.net/caihaijiang/article/details/8629725 spring 允许 ...

  9. python基础入门之函数基础

    **python函数**一.def语名 def语名在运行的时候创建一个新的函数对象并且赋值一个变量名 一个def语句可以出现在任一语句可以出现的地方(python中所有的语名都是实时运行的,没有编译这 ...

  10. 上传本地文件到github

    第一步:创建新的仓库 勾选Initialize this repository with a README选项,自动创建REAMDE.md文件. 第二步: $ git config --global ...