Graph Without Long Directed Paths CodeForces - 1144F (dfs染色)
You are given a connected undirected graph consisting of nn vertices and mm edges. There are no self-loops or multiple edges in the given graph.
You have to direct its edges in such a way that the obtained directed graph does not contain any paths of length two or greater (where the length of path is denoted as the number of traversed edges).
Input
The first line contains two integer numbers nn and mm (2≤n≤2⋅1052≤n≤2⋅105, n−1≤m≤2⋅105n−1≤m≤2⋅105) — the number of vertices and edges, respectively.
The following mm lines contain edges: edge ii is given as a pair of vertices uiui, vivi (1≤ui,vi≤n1≤ui,vi≤n, ui≠viui≠vi). There are no multiple edges in the given graph, i. e. for each pair (ui,viui,vi) there are no other pairs (ui,viui,vi) and (vi,uivi,ui) in the list of edges. It is also guaranteed that the given graph is connected (there is a path between any pair of vertex in the given graph).
Output
If it is impossible to direct edges of the given graph in such a way that the obtained directed graph does not contain paths of length at least two, print "NO" in the first line.
Otherwise print "YES" in the first line, and then print any suitable orientation of edges: a binary string (the string consisting only of '0' and '1') of length mm. The ii-th element of this string should be '0' if the ii-th edge of the graph should be directed from uiui to vivi, and '1' otherwise. Edges are numbered in the order they are given in the input.
Example
6 5
1 5
2 1
1 4
3 1
6 1
YES
10100
Note
The picture corresponding to the first example:
And one of possible answers:
题意:
给定一个无向图,让其把边变成一个有向边,边的方向可以你自己定,but要求最后的图中任何一个路径的长度不能大于等于2。
通过分析我们可以发现,要满足图中的任意一个路径的长度不大于等于2的话,那么对于任意一个节点i,如果它在一个边中做起点,那么就不能在另一个边中做终点。显然一个节点在它连接的所有的边中,只能做起点或者终点。
还有一个结论就是,我们如果找到一个满足题意条件的情况,我们把所有的边的方向反转,一定也满足。
我们把一个点作为起点or终点用颜色来表示,例如用蓝色和红色来表示,那么就是任意一个边相连接的两个节点,节点不能为同一种颜色。
这就是很裸的dfs然双颜色的问题啦。
细节见accode
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<pii> v[maxn];// to id
int col[maxn];
int vis[maxn];
int n,m;
int isok=;
void dfs(int x)
{
if(!isok)
{
return ;
}
int num=col[x];
if(num==)
{
num=;
col[x]=;// zuo起点的
}
for(auto temp :v[x])
{
if(vis[temp.se]==)
{
vis[temp.se]=;
int tn=col[temp.fi];
if(tn!=)
{
if(tn==num)
{
isok=;
return ;
}else
{
if(num==)
{
col[temp.fi]=;
dfs(temp.fi);
}else
{
col[temp.fi]=;
dfs(temp.fi);
}
}
}else
{
if(num==)
{
col[temp.fi]=;
dfs(temp.fi);
}else
{
col[temp.fi]=;
dfs(temp.fi);
}
}
}
}
}
int aa[maxn];
int bb[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>m;
int a,b;
repd(i,,m)
{
cin>>a>>b;
v[a].pb(mp(b,i));
v[b].pb(mp(a,i));
aa[i]=a;
bb[i]=b;
}
repd(i,,n)
{
dfs(i);
}
// repd(i,1,n)
// {
// db(col[i]);
// }
if(!isok)
{
cout<<"NO"<<endl;
return ;
}
cout<<"YES"<<endl;
repd(i,,m)
{
if(col[aa[i]]==)
{
cout<<;
}else
{
cout<<;
}
}
cout<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Graph Without Long Directed Paths CodeForces - 1144F (dfs染色)的更多相关文章
- F. Graph Without Long Directed Paths Codeforces Round #550 (Div. 3)
F. Graph Without Long Directed Paths time limit per test 2 seconds memory limit per test 256 megabyt ...
- Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths
F. Graph Without Long Directed Paths time limit per test 2 seconds memory limit per test 256 ...
- Codeforces 1144F Graph Without Long Directed Paths DFS染色
题意: 输入一张有向图,无自回路和重边,判断能否将它变为有向图,使得图中任意一条路径长度都小于2. 如果可以,按照输入的边的顺序输出构造的每条边的方向,构造的边与输入的方向一致就输出1,否则输出0. ...
- Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)
<题目链接> 题目大意:给定一个无向图,该无向图不含自环,且无重边.现在要你将这个无向图定向,使得不存在任何一条路径长度大于等于2.然后根输入边的顺序,输出构造的有向图.如果构造的边与输入 ...
- Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths (二分图染色)
题意:有\(n\)个点和\(m\)条无向边,现在让你给你这\(m\)条边赋方向,但是要满足任意一条边的路径都不能大于\(1\),问是否有满足条件的构造方向,如果有,输出一个二进制串,表示所给的边的方向 ...
- [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)
[Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...
- hdu 5313 Bipartite Graph(dfs染色 或者 并查集)
Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...
- Codeforces Codeforces Round #383 (Div. 2) E (DFS染色)
题目链接:http://codeforces.com/contest/742/problem/E 题意: 有一个环形的桌子,一共有n对情侣,2n个人,一共有两种菜. 现在让你输出一种方案,满足以下要求 ...
- Codeforces Gym100502A:Amanda Lounges(DFS染色)
http://codeforces.com/gym/100502/attachments 题意:有n个地点,m条边,每条边有一个边权,0代表两个顶点都染成白色,2代表两个顶点都染成黑色,1代表两个顶点 ...
随机推荐
- js 实现动态时间
<span id="timebox"></span> //承载时间的span $(function () { var o ...
- C#方法重载(overload)方法重写(override)隐藏(new)
一.重载:同一个作用域内发生(比如一个类里面),定义一系列同名方法,但是方法的参数列表不同.这样才能通过传递不同的参数来决定到底调用哪一个. 值得注意的是,方法重载只有通过参数不同来判断调用哪个方法, ...
- emacs 配置.emacs
emacs 配置.emacs (require 'package) (package-initialize) (add-to-list'package-archives '("melpa&q ...
- Linux中环境变量中文件执行顺序
Linux 的变量可分为两类:环境变量和本地变量 环境变量:或者称为全局变量,存在于所有的shell 中,在你登陆系统的时候就已经有了相应的系统定义的环境变量了.Linux 的环境变量具有 ...
- (转)Spring Boot 2 (十):Spring Boot 中的响应式编程和 WebFlux 入门
http://www.ityouknow.com/springboot/2019/02/12/spring-boot-webflux.html Spring 5.0 中发布了重量级组件 Webflux ...
- xpath 解析 及案例
xpath解析 编码流程: 1.实例化一个etree对象,且将页面源码加载到该对象中 2.使用xpath函数,且在函数中必须作用一个xpath表达式进行标签的定位 3.使用xpath进行属性和文本的提 ...
- 连接rabbitmq
#消费者import pika # 连接服务器 credentials = pika.PlainCredentials('*****', '***') connection = pika.Blocki ...
- spring boot监控--actuator
原文地址:http://blog.csdn.net/wh_ouyangshuang/article/details/48048111 spring-boot-actuator模块提供了一个监控和管理生 ...
- maven 将jar包推送到自己本机的maven库
mvn install:install-file -DgroupId=com.wdcloud.sdk -DartifactId=front-category-signed -Dversion=1.0. ...
- <转> mysql处理高并发,防止库存超卖
先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购.秒杀.特价之类的活动,而这样的活动有一个共同的特点就是访问量激增.上千甚至上万人抢购 一个商品.然而,作为活动商品,库存肯定是很有限的,如何 ...