前言

最近又读了一遍 Borg, Omega, and Kubernetes 这篇文章,觉得这个文章写得很好,让我对架构设计有了进一步的认识,所以想写一篇读后笔记。

原文地址,还有篇中文翻译的,这个中文翻译感觉有的地方没有翻译,有的地方我有不同的理解,这里我就以英文原版为例,参考中文翻译来写这篇读后笔记。

容器管理系统的介绍

Borg was built to manage both long-running services and batch jobs, which had previously been handled by two separate systems: Babysitter and the Global Work Queue.

Borg 主要是管理长期运行的服务和批处理作业,Borg 的复杂度也是逐渐增加的,有很多定制化的东西,所以和谷歌的内部系统耦合很紧。

Omega, an offspring of Borg, was driven by a desire to improve the software engineering of the Borg ecosystem.
It applied many of the patterns that had proved successful
in Borg, but was built from the ground up to have a more consistent, principled architecture.

Omega 强调更高的一致性。

More importantly, Kubernetes
was developed with a stronger focus on the experience of developers writing applications that run in a cluster: its main design goal is to make it easy to deploy and manage complex distributed systems, while still benefiting from the improved utilization that containers enable.

这句话我还是想强调一下的,K8s 在开发的时候非常强调开发者在开发集群中应用的体验,它的主要目标就是简化管理和部署复杂的分布式系统,同时还能受益于容器的高利用率。

现在的大厂竞争其实就是开发者的竞争,现在越来越强调注重开发者体验而非最终用户体验这个理念(其实就是 API 设计是否良好,或者说编程体验是不是良好)。

面向应用的基础设施

over time it became clear that the benefits of containerization go beyond merely enabling higher levels of utilization.

  1. Containers encapsulate the application environment, abstracting away many details of machines and operating systems from the application developer and the deployment infrastructure.

  2. Because well-designed containers and container images are scoped to a single application, managing containers means managing applications rather than machines. This shift of management APIs from machine-oriented to application oriented dramatically improves application deployment and introspection.

应用环境

One consequence is that Google has only a small number of OS versions deployed across its entire fleet of machines at any one time, and it needs only a small staff of people to maintain them and push out new versions.

容器作为管理单元

Building management APIs around containers rather than machines shifts the “primary key” of the data center from machine to application.

A common use pattern is for a pod to hold an instance
of a complex application. The major part of the application sits in one of the child containers, and other child containers run supporting functions such as log rotation or click-
log offloading to a distributed file system. Compared to combining the functionality into a single binary, this makes it easy to have different teams develop the distinct pieces of functionality, and it improves robustness (the offloading continues even if the main application gets wedged), composability (it’s easy to add a new small support service, because it operates in the private execution environment provided by its own container), and fine-grained resource isolation (each runs in its own resources, so the logging system can’t starve the main app, or vice versa).

编排只是开始,不是结束

Consistency is also achieved through common design patterns for different Kubernetes components. The idea of a reconciliation controller loop is shared throughout Borg, Omega, and Kubernetes to improve the resiliency of a system: it compares a desired state (e.g., how many pods should match a label-selector query) against the observed state (the number of such pods that it can find), and takes actions to converge the observed and desired states.Because all action is based on observation rather than a state diagram, reconciliation loops are robust to failures and perturbations: when a controller fails or restarts it simply picks up where it left off.

需要避免的事情

不要让容器系统管理端口

不要只是标识容器:给他们标签

注意所有权

In Kubernetes, pod-lifecycle management components such as replication controllers determine which pods
they are responsible for using label selectors, so multiple controllers might think they have jurisdiction over a single pod. It is important to prevent such conflicts through appropriate configuration choices. But the flexibility of labels has compensating advantages—for example, the separation of controllers and pods means that it is possible to “orphan” and “adopt” containers.

不要暴露裸状态

A key difference between Borg, Omega, and Kubernetes is
in their API architectures.

一些开放并且困难的问题

配置

依赖管理

结语

A decade's worth of experience building container-management systems has taught us much, and we have embedded many of those lessons into Kubernetes, Google's most recent container-management system. Its goals are to build on the capabilities of containers to provide significant gains in programmer productivity and ease of both manual and automated system management. We hope you'll join us in extending and improving it.

Borg, Omega, and Kubernetes读后笔记的更多相关文章

  1. Borg、Omega和Kubernetes:谷歌十几年来从这三个容器管理系统中得到的经验教训 原创: 韩佳瑶 译 Docker 2016-03-23Borg、Omega和Kubernetes:谷歌十几年来从这三个容器管理系统中得到的经验教训 原创: 韩佳瑶 译 Docker 2016-03-23

    Borg.Omega和Kubernetes:谷歌十几年来从这三个容器管理系统中得到的经验教训 原创: 韩佳瑶 译 Docker 2016-03-23

  2. Docker Swarm和Kubernetes在大规模集群中的性能比较

    Contents 这篇文章主要针对Docker Swarm和Kubernetes在大规模部署的条件下的3个问题展开讨论.在大规模部署下,它们的性能如何?它们是否可以被批量操作?需要采取何种措施来支持他 ...

  3. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

  4. 【有容云干货-容器系列】Kubernetes调度核心解密:从Google Borg说起

    在之前“容器生态圈脑图大放送”文章中我们根据容器生态圈脑图,从下至上从左至右,依次介绍了容器生态圈中8个组件,其中也提到Kubernetes ,是一个以 Google Borg 为原型的开源项目.可实 ...

  5. Kubernetes的本质

    在前面的四篇文章中,我以 Docker 项目为例,一步步剖析了 Linux 容器的具体实现方式.通过这 些讲解你应该能够明白:一个“容器”,实际上是一个由 Linux Namespace.Linux ...

  6. Kubernetes 入门必备云原生发展简史

    作者|张磊 阿里云容器平台高级技术专家,CNCF 官方大使 "未来的软件一定是生长于云上的"这是云原生理念的最核心假设.而所谓"云原生",实际上就是在定义一条能 ...

  7. 01 . 容器编排简介及Kubernetes核心概念

    Kubernetes简介 Kubernetes是谷歌严格保密十几年的秘密武器-Borg的一个开源版本,是Docker分布式系统解决方案.2014年由Google公司启动. Kubernetes提供了面 ...

  8. 第一篇:《Kubernetes 入门介绍》

    前言:本文是一篇 kubernetes(下文用 k8s 代替)的入门文章,将会涉及 k8s 的技术历史背景.架构.集群搭建.一个 Redis 的例子,以及如何使用 operator-sdk 开发 op ...

  9. kubernetes(K8S)快速安装与配置集群搭建图文教程

    kubernetes(K8S)快速安装与配置集群搭建图文教程 作者: admin 分类: K8S 发布时间: 2018-09-16 12:20 Kubernetes是什么? 首先,它是一个全新的基于容 ...

随机推荐

  1. Go语言编程读书笔记:Go channel(2)

    单向channel 概念 单向channel是只能用于发送或者接收数据,channel本身必然是同时支持读写,否则根本没法用.假如一个channel只能读,那么肯定只会是空的,因为你没有机会向里面写数 ...

  2. 给统计人讲python(1)模拟城市_数据分析

    为让学校统计学社的同学了解python在数据处理方面的功能,将手游模拟城市的工厂生产进行建模,让同学在建模与处理非结构数据的过程中学习和了解python.将准备的内容放在此让更多需要的人特别是统计人( ...

  3. day44 mysql高级部分内容

    复习 1.多表查询 2.navicat 3.pymysql 1.视图 ***(是一个虚拟表,非真实存在的) 引子 select * from emp left join dep on emp.dep_ ...

  4. 关于d3.js 将一个element 拖拽到另一个element的响应事件

    rt 正在做机柜可视化, 一个需求是能拖拽左侧列表的设备名称, 拖到右侧42U机柜中,并将设备图片放置在对应机柜位置上. 开始的时候一切都很顺利,点击左侧设备名称,添加一个g容器,将设备名称作为tex ...

  5. java、asp.net 通用分页码函数

    <script type="text/javascript"> $(document).ready(function(){ ajaxGetPaging(1); }); ...

  6. poj2828(线段树查找序列第k小的值)

    题目链接:https://vjudge.net/problem/POJ-2828 题意:有n个人,依次给出这n个人进入队列时前面有多少人p[i],和它的权值v[i],求最终队列的权值序列. 思路:基本 ...

  7. 100-days: twenty-eight

    Title: Lawrence Ferlinghetti's(劳伦斯·费林盖蒂) enduring San Francisco(旧金山) 劳伦斯·费林盖蒂心中的旧金山,历久弥新 费林盖蒂:美国垮掉的一 ...

  8. Ubuntu16.04 安装python3.7和pip3

    到官网下载源码 装个依赖包:apt-get install libffi-dev 三部曲 ./configure make make install 但此时pip3可能不行,加个local,前提是前面 ...

  9. 矢量水听器 近场 远场 --------------------常规波束形成,MVDR的比较

    摘自<水平线阵的反卷积常规波束形成>,IRONMAN--------------------------------------------------- 在常规的波束形成中,是将阵列上的 ...

  10. LAB12 Transaction

    思路:就是把aotocommit()里面的东西改改就行了. 查询要求可用房间>=所需要的房间. SQL里面查数字时,不要加单引号.字符串才要. 查询里的set ONHAND=要改成自己的变量名s ...