强化学习读书笔记 - 10 - on-policy控制的近似方法

学习笔记:
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016

参照

需要了解强化学习的数学符号,先看看这里:

on-policy控制的近似方法

近似控制方法(Control Methods)是求策略的行动状态价值\(q_{\pi}(s, a)\)的近似值\(\hat{q}(s, a, \theta)\)。

半梯度递减的控制Sarsa方法 (Episodic Semi-gradient Sarsa for Control)

Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\)

Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\))
Repeat (for each episode):
  \(S, A \gets\) initial state and action of episode (e.g., "\(\epsilon\)-greedy)
  Repeat (for each step of episode):
   Take action \(A\), observe \(R, S'\)
   If \(S'\) is terminal:
    \(\theta \gets \theta + \alpha [R - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\)
    Go to next episode
   Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy)
   \(\theta \gets \theta + \alpha [R + \gamma \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\)
   \(S \gets S'\)
   \(A \gets A'\)

多步半梯度递减的控制Sarsa方法 (n-step Semi-gradient Sarsa for Control)

请看原书,不做拗述。

(连续性任务的)平均奖赏

由于打折率(\(\gamma\), the discounting rate)在近似计算中存在一些问题(说是下一章说明问题是什么)。
因此,在连续性任务中引进了平均奖赏(Average Reward)\(\eta(\pi)\):
\[
\begin{align}
\eta(\pi)
& \doteq \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}{T} \mathbb{E} [R_t | A_{0:t-1} \sim \pi] \\
& = \lim_{t \to \infty} \mathbb{E} [R_t | A_{0:t-1} \sim \pi] \\
& = \sum_s d_{\pi}(s) \sum_a \pi(a|s) \sum_{s',r} p(s,r'|s,a)r
\end{align}
\]

  • 目标回报(= 原奖赏 - 平均奖赏)
    \[
    G_t \doteq R_{t+1} - \eta(\pi) + R_{t+2} - \eta(\pi) + \cdots
    \]

  • 策略价值
    \[
    v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + v_{\pi}(s')] \\
    q_{\pi}(s,a) = \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + \sum_{a'} \pi(a'|s') q_{\pi}(s',a')] \\
    \]

  • 策略最优价值
    \[
    v_{*}(s) = \underset{a}{max} \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + v_{*}(s')] \\
    q_{*}(s,a) = \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + \underset{a'}{max} \ q_{*}(s',a')] \\
    \]

  • 时序差分误差
    \[
    \delta_t \doteq R_{t+1} - \bar{R} + \hat{v}(S_{t+1},\theta) - \hat{v}(S_{t},\theta) \\
    \delta_t \doteq R_{t+1} - \bar{R} + \hat{q}(S_{t+1},A_t,\theta) - \hat{q}(S_{t},A_t,\theta) \\
    where \\
    \bar{R} \text{ - is an estimate of the average reward } \eta(\pi)
    \]

  • 半梯度递减Sarsa的平均奖赏版
    \[
    \theta_{t+1} \doteq \theta_t + \alpha \delta_t \nabla \hat{q}(S_{t},A_t,\theta)
    \]

半梯度递减Sarsa的平均奖赏版(for continuing tasks)

Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\)
Parameters: step sizes \(\alpha, \beta > 0\)

Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\))
Initialize average reward estimate \(\bar{R}\) arbitrarily (e.g., \(\bar{R} = 0\))
Initialize state \(S\), and action \(A\)

Repeat (for each step):
  Take action \(A\), observe \(R, S'\)
  Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy)
  \(\delta \gets R - \bar{R} + \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)\)
  \(\bar{R} \gets \bar{R} + \beta \delta\)
  \(\theta \gets \theta + \alpha \delta \nabla \hat{q}(S, A, \theta)\)
  \(S \gets S'\)
  \(A \gets A'\)

多步半梯度递减的控制Sarsa方法 - 平均奖赏版(for continuing tasks)

请看原书,不做拗述。

强化学习读书笔记 - 10 - on-policy控制的近似方法的更多相关文章

  1. 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)

    强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...

  2. 强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces)

    强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces) 学习笔记: Reinforcement Learning: An Introduction, Richard S. S ...

  3. 强化学习读书笔记 - 11 - off-policy的近似方法

    强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and ...

  4. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  5. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  6. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  7. 强化学习读书笔记 - 09 - on-policy预测的近似方法

    强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and A ...

  8. 深度学习读书笔记之RBM(限制波尔兹曼机)

    深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的 ...

  9. 李宏毅强化学习完整笔记!开源项目《LeeDeepRL-Notes》发布

    Datawhale开源 核心贡献者:王琦.杨逸远.江季 提起李宏毅老师,熟悉强化学习的读者朋友一定不会陌生.很多人选择的强化学习入门学习材料都是李宏毅老师的台大公开课视频. 现在,强化学习爱好者有更完 ...

随机推荐

  1. Hadoop 解除 NameNode is in safe mode

    运行Hadoop程序时,有时候会报以下错误: org.apache.hadoop.dfs.SafeModeException: Cannot delete /user/hadoop/input. Na ...

  2. HDU 3635 Dragon Balls(超级经典的带权并查集!!!新手入门)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. 过滤ST/退市股票

    nest_dict = {'code': {1: '000033', 2: '002113', 3: '002260', 4: '002512'}, 'name': {1: '新都退', 2: 'ST ...

  4. 当面试官问你sql优化的时候。。。

    当面试官问你有关sql优化的问题时,直接拿笔写给他: 8-select 9-distinct<column_list> 1-from left_table 3-<join_type& ...

  5. Struts2学习总结——文件上传与下载

    Struts2文件上传与下载 1.1.1新建一个Maven项目(demo02) 在此添加Web构面以及 struts2 构面 1.2.1配置Maven依赖(pom.xml 文件) <?xml v ...

  6. C++练习 | 递归创建二叉树并求叶子结点的数值和

    #include <iostream> using namespace std; struct Tree { int data; Tree *lchild; Tree *rchild; } ...

  7. 12JavaScript字符串

    JavaScript 字符串用于存储和处理文本. 1.JavaScript 字符串 字符串可以存储一系列字符,如 "John Doe". 字符串可以是插入到引号中的任何字符.你可以 ...

  8. filter 图片滤镜的各种设置

    filter 图片滤镜 给当前元素加滤镜_改变它的明亮度 定义:filter 属性定义了元素(通常是<img>)的可视效果(例如:模糊与饱和度).作用在图片上或元素上.div{ },或 d ...

  9. lnmp+coreseek实现站内全文检索(安装篇)

    coreseek安装与简单实用 安装环境 系统环境 centos7.2 1核2G 软件环境 coreseek-3.2.14 lnmp1.5 安装mmseg 更新依赖包和安装编译环境 yum -y in ...

  10. Java Hibernate Validator

    Hibernate Validator是Hibernate提供的一个开源框架,使用注解方式非常方便的实现服务端的数据校验. 官网:http://hibernate.org/validator/ hib ...