用Tensorflow完成简单的线性回归模型
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点。
1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(0.0,0.55) #横坐标,进行随机高斯处理化,以0为均值,以0.55为标准差
y1=x1*0.1+0.3+np.random.normal(0.0,0.03) #纵坐标,数据点在y1=x1*0.1+0.3上小范围浮动
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
plt.scatter(x_data,y_data,c='r')
plt.show()
构造数据如下图
2)构造线性回归模型,学习上面数据图是符合一个怎么样的W和b
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W') # 生成1维的W矩阵,取值是[-1,1]之间的随机数
b = tf.Variable(tf.zeros([1]), name='b') # 生成1维的b矩阵,初始值是0
y = W * x_data + b # 经过计算得出预估值y
loss = tf.reduce_mean(tf.square(y - y_data), name='loss') # 以预估值y和实际值y_data之间的均方误差作为损失
optimizer = tf.train.GradientDescentOptimizer(0.5) # 采用梯度下降法来优化参数 学习率为0.5
train = optimizer.minimize(loss, name='train') # 训练的过程就是最小化这个误差值
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 初始化的W和b是多少
for step in range(20): # 执行20次训练
sess.run(train)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 输出训练好的W和b
打印每一次结果,如下图,随着迭代进行,训练的W、b越来越接近0.1、0.3,说明构建的回归模型确实学习到了之间建立的数据的规则。loss一开始很大,后来慢慢变小,说明模型表达效果随着迭代越来越好。
W = [-0.9676645] b = [0.] loss = 0.45196822
W = [-0.6281831] b = [0.29385352] loss = 0.17074569
W = [-0.39535886] b = [0.29584622] loss = 0.07962803
W = [-0.23685378] b = [0.2972129] loss = 0.03739688
W = [-0.12894464] b = [0.2981433] loss = 0.017823622
W = [-0.05548081] b = [0.29877672] loss = 0.008751821
W = [-0.00546716] b = [0.29920793] loss = 0.0045472304
W = [0.02858179] b = [0.2995015] loss = 0.0025984894
W = [0.05176209] b = [0.29970136] loss = 0.0016952885
W = [0.06754307] b = [0.29983744] loss = 0.0012766734
W = [0.07828666] b = [0.29993007] loss = 0.001082654
W = [0.08560082] b = [0.29999313] loss = 0.0009927301
W = [0.09058025] b = [0.30003607] loss = 0.0009510521
W = [0.09397022] b = [0.30006528] loss = 0.00093173544
W = [0.09627808] b = [0.3000852] loss = 0.00092278246
W = [0.09784925] b = [0.30009875] loss = 0.000918633
W = [0.09891889] b = [0.30010796] loss = 0.00091670983
W = [0.0996471] b = [0.30011424] loss = 0.0009158184
W = [0.10014286] b = [0.3001185] loss = 0.00091540517
W = [0.10048037] b = [0.30012143] loss = 0.0009152137
W = [0.10071015] b = [0.3001234] loss = 0.0009151251
注:以上内容为我学习唐宇迪老师的Tensorflow课程所做的笔记
用Tensorflow完成简单的线性回归模型的更多相关文章
- tensorflow入门(1):构造线性回归模型
今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = ...
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- 【学习笔记】tensorflow实现一个简单的线性回归
目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算AP ...
- 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...
- TensorFlow从0到1之TensorFlow实现简单线性回归(15)
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...
- 线性回归模型的 MXNet 与 TensorFlow 实现
本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-l ...
- TensorFlow简要教程及线性回归算法示例
TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...
随机推荐
- SqlParameter 2
SqlParameter string strSql = "Insert into News(TypeId,NewsCaption,NewsContent) values(@TypeId,@ ...
- php的mysqli_connect函数显示 No such file or directory错误以及localhost换成127.0.0.1执行成功
Centos7环境-php7-MariaDB5.5.60 (新安装的php7,执行php -m 显示有mysqli模块,php.ini没有改其它) 测试代码为: <?php //~ echo d ...
- 偏前端-vue.js学习之路初级(一)概念
首先--不推荐新手直接使用 vue-cli,尤其是在你还不熟悉基于 Node.js 的构建工具时. 新建一个html,引入一下js: <!-- 开发环境版本,包含了有帮助的命令行警告 -- ...
- 嵌入式C语言自我修养 12:有一种宏,叫可变参数宏
12.1 什么是可变参数宏 在上面的教程中,我们学会了变参函数的定义和使用,基本套路就是使用 va_list.va_start.va_end 等宏,去解析那些可变参数列表我们找到这些参数的存储地址后, ...
- 两张图证明 WolframAlpha 的强大
引用于:https://capbone.com/wolfram-alpha/ 两张图证明 WolframAlpha 的强大 之前在" 我手机中有哪些应用 "里提到过 Wolfram ...
- 智能家居系统 Home Assistant 系列 --介绍篇
一. HomeAssistant 是什么? HomeAssistant是构建智慧空间的神器.是一个成熟完整的基于 Python 的智能家居系统,设备支持度高,支持自动化(Automation).群组化 ...
- 自己写的一些Excel及WordVBA函数[原创]
1.将Excel当前工作表另存至桌面 Excel中有时一个工作簿中工作表特别多,需要快速单独存取其中一个,可用以下代码快速存至桌面 Sub 另存工作表到桌面() Dim sh As Worksheet ...
- C# 访问修饰符和const、readonly
今天被人问起const和readonly,竟然有点咬不准,复习一遍. 访问修饰符 public 公有访问.不受任何限制. private 私有访问.只限于本类成员访问,子类,实例都不能访问. prot ...
- 20155339 《Java程序设计》实验五网络编程与安全实验报告
20155339 <Java程序设计>实验五网络编程与安全实验报告 实验内容 实验一 1.两人一组结对编程: 参考http://www.cnblogs.com/rocedu/p/67667 ...
- 【原创】Odoo开发文档学习之:ORM API接口(ORM API)(边Google翻译边学习)
官方ORM API开发文档:https://www.odoo.com/documentation/10.0/reference/orm.html Recordsets(记录集) New in vers ...