用Tensorflow完成简单的线性回归模型
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点。

1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_points=1000
vectors_set=[]
for i in range(num_points):
x1=np.random.normal(0.0,0.55) #横坐标,进行随机高斯处理化,以0为均值,以0.55为标准差
y1=x1*0.1+0.3+np.random.normal(0.0,0.03) #纵坐标,数据点在y1=x1*0.1+0.3上小范围浮动
vectors_set.append([x1,y1])
x_data=[v[0] for v in vectors_set]
y_data=[v[1] for v in vectors_set]
plt.scatter(x_data,y_data,c='r')
plt.show()
构造数据如下图

2)构造线性回归模型,学习上面数据图是符合一个怎么样的W和b
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W') # 生成1维的W矩阵,取值是[-1,1]之间的随机数
b = tf.Variable(tf.zeros([1]), name='b') # 生成1维的b矩阵,初始值是0
y = W * x_data + b # 经过计算得出预估值y
loss = tf.reduce_mean(tf.square(y - y_data), name='loss') # 以预估值y和实际值y_data之间的均方误差作为损失
optimizer = tf.train.GradientDescentOptimizer(0.5) # 采用梯度下降法来优化参数 学习率为0.5
train = optimizer.minimize(loss, name='train') # 训练的过程就是最小化这个误差值
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 初始化的W和b是多少
for step in range(20): # 执行20次训练
sess.run(train)
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 输出训练好的W和b
打印每一次结果,如下图,随着迭代进行,训练的W、b越来越接近0.1、0.3,说明构建的回归模型确实学习到了之间建立的数据的规则。loss一开始很大,后来慢慢变小,说明模型表达效果随着迭代越来越好。
W = [-0.9676645] b = [0.] loss = 0.45196822
W = [-0.6281831] b = [0.29385352] loss = 0.17074569
W = [-0.39535886] b = [0.29584622] loss = 0.07962803
W = [-0.23685378] b = [0.2972129] loss = 0.03739688
W = [-0.12894464] b = [0.2981433] loss = 0.017823622
W = [-0.05548081] b = [0.29877672] loss = 0.008751821
W = [-0.00546716] b = [0.29920793] loss = 0.0045472304
W = [0.02858179] b = [0.2995015] loss = 0.0025984894
W = [0.05176209] b = [0.29970136] loss = 0.0016952885
W = [0.06754307] b = [0.29983744] loss = 0.0012766734
W = [0.07828666] b = [0.29993007] loss = 0.001082654
W = [0.08560082] b = [0.29999313] loss = 0.0009927301
W = [0.09058025] b = [0.30003607] loss = 0.0009510521
W = [0.09397022] b = [0.30006528] loss = 0.00093173544
W = [0.09627808] b = [0.3000852] loss = 0.00092278246
W = [0.09784925] b = [0.30009875] loss = 0.000918633
W = [0.09891889] b = [0.30010796] loss = 0.00091670983
W = [0.0996471] b = [0.30011424] loss = 0.0009158184
W = [0.10014286] b = [0.3001185] loss = 0.00091540517
W = [0.10048037] b = [0.30012143] loss = 0.0009152137
W = [0.10071015] b = [0.3001234] loss = 0.0009151251
注:以上内容为我学习唐宇迪老师的Tensorflow课程所做的笔记
用Tensorflow完成简单的线性回归模型的更多相关文章
- tensorflow入门(1):构造线性回归模型
今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = ...
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- 【学习笔记】tensorflow实现一个简单的线性回归
目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算AP ...
- 机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(test ...
- TensorFlow从0到1之TensorFlow实现简单线性回归(15)
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...
- 线性回归模型的 MXNet 与 TensorFlow 实现
本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-l ...
- TensorFlow简要教程及线性回归算法示例
TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...
随机推荐
- Vcenter虚拟化三部曲----VMWare ESXi 5.5安装及配置
VMWare ESXi 5.5安装大概过程如下:制作虚拟化ESXi系统的USB启动盘,安装ESXi系统到USB,用USB启动ESXi系统.比较难理解,下面图解过程. 下载UNetbootin (下 ...
- iOS 数据安全、数据加密传输
近期接到一个新需求:APP企业版需要接入热更新功能. 热更新需要下发补丁脚本, 脚本下发过程中需要保证脚本传输安全,且需要避免中间人攻击. 需要用到数据加密传输方面的知识,以下是我设计的加密解密流程: ...
- iOS:UITableView相关(18-10-20更)
UITableView用得较多,遇到的情况也较多,单独记录一篇. 一.零散的技巧 二.取cell 三.cell高度 四.导航栏.TableView常见问题相关 五.自定义左滑删除按钮图片 六.仅做了解 ...
- POJ3074 Sudoku(lowbit优化搜索)
In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For exa ...
- Mysql浅析-基础命令(一)
主要从以上篇幅来介绍mysql的一些知识点 一.Mysql简介 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数 ...
- js之冒泡排序与快速排序
//冒泡排序 let arr = [1, 6, 3, 7, 5, 9, 2, 8]; function sort(arr) { //升序 console.time("冒泡排序耗时" ...
- c#开发微信公众号——关于c#对象与xml的转换
在成为微信公众号开发者以后,整个交互流程:用户->微信服务器->自己的服务器->返回微信服务器->用户: 举个例子:用户在微信公众号里面发了个“您好!”,微信服务器会以特定的x ...
- Home Assistant系列 -- 设置界面语言与地理位置
Home Assistant 安装的时候会自动根据你的系统语言设置默认语言,安装完成以后也可以根据需要自己设置选择语言.启动 Home Assistant ,浏览器打开web 界面,点击左上角的用户图 ...
- Python学习 :网络通信要素
网络通信 OSI 模型 - 定义了计算机互联的标准,是设计和描述计算机网络通信的基本框架 - 把网络通信的工作分为7层,分别是物理层.链路层(数据网络层).网络层.传输层.会话层.表示层和应用层 网络 ...
- Lingo安装
Lingo安装 Lingo简介 LINGO是Linear Interactive and General Optimizer的缩写,即"交互式的线性和通用优化求解器" ...