Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4389
Main Points:
- A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep.
- The recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations.
Other Key Points:
- A significant limitation of simple RNN models which strictly integrate state information over time is known as the "vanishing gradient" effect: the ability to backpropogate an error signal through a long-range temporal interval becomes increasingly impossible in practice.
- The authors show LSTM-type models provide for improved recognition on conventional video activity challenges and enable a novel end-to-end optimizable mapping from image pixels to sentence-level natural language descriptions.
Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )的更多相关文章
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
- SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解
论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...
- 论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling ...
- SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)
1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
随机推荐
- Microsoft SQL Server2008安装教程
自己录制的视频,地址https://share.weiyun.com/5VITfph(微云分享,大小52MB,AVI格式) 视频中安装.net framework如果已经安装好了就不需要安装,也可自行 ...
- objc中类方法里的self指的是什么
所有转出“博客园”,请您注明出处:http://www.cnblogs.com/xiaobajiu/p/4121431.html objc中类方法里的self指的是什么 在objc中是可以在类方法中使 ...
- JS判断两个数字的大小
javascript中定义的var类型是弱类型,默认是String类型,在比较两个数字大小的时候默认比较的是两个字符串,比如,在比较10和2时,按数字做比较10是比2大,可是按默认的字符串比较时,第一 ...
- VS2015菜单栏重复删除
举个例子,这个是工具栏的,出现了重复 只要选择工具栏自定义那个选项,在多余命令的下方,先删除几个外部命令,然后把空行删除,最后全部重置即可 结果如下图
- 19-3-8Python中编码的进阶、文件操作初识、深浅copy
编码的进阶 ASCII:英文字母,数字,特殊符号,——> 二进制的对应关系 Str: 1个字符——> 1个字节 Unicode:万国码:世界上所有的文字与二进制的对应关系 1个字符——& ...
- WebGl 一个缓冲区传递颜色和坐标(矩形)
效果: 代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- 偏前端 - 不是固定宽高,页面随设备同比 放大/缩小 展示。不妨看看rem单位,你就有眉目上手做了!!!
为什么要使用rem 之前有些适配做法,是通过js动态计算viewport的缩放值(initial-scale). 例如以屏幕320像素为基准,设置1,那屏幕375像素就是375/320=1.18以此类 ...
- 2.Hadoop集群安装进阶
Hadoop进阶 1.配置SSH免密 (1)修改slaves文件 切换到master机器,本节操作全在master进行. 进入/usr/hadoop/etc/hadoop目录下,找到slaves文件, ...
- CDH部署(以5.7.5为例)
博客园首发,转载请注明出处https://www.cnblogs.com/tzxxh/p/9120020.html 一.准备工作(下面的内容括号内写master的表示仅在master节点执行,all代 ...
- nexus3使用docker运行/创建docker私有仓库/maven私有仓库
version: '3.2' services: nexus3: container_name: nexus3 hostname: nexus3 image: sonatype/nexus3:3.14 ...