题意:美丽数定义:一个正数能被所有位数整除。求给出一个范围,回答这个范围内的美丽数。

思路:一个数能被所有位数整除,换句话说就是一个数能整除所有位数的LCM,所以问题就转化为一个数能否被所有位数的LCM整除。按照一般的思想,直接开三维dp[pos][num][lcm]。但是num范围很大,直接开就爆了,怎么办呢?我们可以把num%2520(即1~9的LCM)储存为mod,因为所有位数最大的LCM就是2520,所以可以mod 2520。然后你很开心的开了dp[pos][2520][2520],然后你又爆了...

然后你可以发现虽然LCM最大是2520,但是没有一个LCM是2519这样的数字,这样就有很多空间浪费,打个表可以发现,1~9的LCM其实就48个数字,我们把这48个数字Hash一下保存,那么就缩小到了dp[pos][2520][48]。

然后你就可以A了

友谊赛被打爆了,水题都不会了

参考

代码:

#include<cstdio>
#include<map>
#include<set>
#include<vector>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
const int N = 50000+5;
const int INF = 0x3f3f3f3f;
using namespace std;
int dig[20];
ll dp[20][2550][50],Hash[2550];
ll Gcd(ll a,ll b){
return b == 0? a : Gcd(b,a%b);
}
ll Lcm(ll a,ll b){
return a * b / Gcd(a,b);
}
ll dfs(int pos,int mod,int lcm,bool limit){
if(pos == -1) return mod % lcm == 0? 1 : 0;
if(!limit && dp[pos][mod][Hash[lcm]] != -1) return dp[pos][mod][Hash[lcm]];
int top = limit? dig[pos] : 9;
ll ret = 0;
for(int i = 0;i <= top;i++){
int MOD = (mod*10 + i) % 2520;
int LCM;
if(i) LCM = Lcm(i,lcm);
else LCM = lcm;
ret += dfs(pos - 1,MOD,LCM,limit && i == top);
}
if(!limit) dp[pos][mod][Hash[lcm]] = ret;
return ret;
}
ll solve(ll x){
int pos = 0;
while(x){
dig[pos++] = x % 10;
x /= 10;
}
ll ret = dfs(pos- 1,0,1,true);
return ret;
}
int main(){
int T;
ll l,r,cnt = 0;
scanf("%d",&T);
memset(dp,-1,sizeof(dp));
for(int i = 1;i*i <= 2520;i++){ //hash
if(2520 % i == 0){
Hash[i] = cnt++;
if(i*i != 2520){
Hash[2520 / i] = cnt++;
}
}
}
while(T--){
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",solve(r) - solve(l - 1));
}
return 0;
}

CodeForces - 55D Beautiful numbers(数位DP+Hash)题解的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  3. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  4. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  5. codeforces 55D. Beautiful numbers 数位dp

    题目链接 一个数, 他的所有位上的数都可以被这个数整除, 求出范围内满足条件的数的个数. dp[i][j][k], i表示第i位, j表示前几位的lcm是几, k表示这个数mod2520, 2520是 ...

  6. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  7. CF 55D. Beautiful numbers(数位DP)

    题目链接 这题,没想出来,根本没想到用最小公倍数来更新,一直想状态压缩,不过余数什么的根本存不下,看的von学长的blog,比着写了写,就是模版改改,不过状态转移构造不出,怎么着,都做不出来. #in ...

  8. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  9. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  10. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

随机推荐

  1. 静态资源的gzip

    1.项目中,接触到gzip.未压缩的文件和压缩后的文件的比例可能达到:3:1.所以,gzip是网络中文件高速传输的很好方法. 2.一般js.css.html文件都会在后端进行gzip.当浏览器请求这些 ...

  2. 使用HttpClient以文件流的方式上传文件(非multipartFormData方式)

    @Test public void testAdd() throws IOException { HttpPost post = new HttpPost("http://localhost ...

  3. .net asp [转载]ASP:循环滚动图片的代码+解释

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. OC开发_Storyboard——绘制和视图

    1.绘制 不要调用drawRect.调用setNeedsDisplay相当于告知系统视图需要重绘, 它会去调用drawRect,更新屏外缓冲器 2.UIBezierPath绘制图形,   设置图像op ...

  5. asp.net 下载文件几种方式

    protected void Button1_Click(object sender, EventArgs e) { /* 微软为Response对象提供了一个新的方法TransmitFile来解决使 ...

  6. 6.IIs部署与发布

    A.网站的发布步骤: 1.首先要选择要发布的网站(即项目里的网站)也就是代码. 2.左键选择发布. 3.配置文件:Web.congig. 4.连接:publis method:File System, ...

  7. Spring Security使用心得

    某天,你的客户提出这样一个需求,在点击购买商品的时,如果用户没有注册,并且用户没有账号,这时用户去创建账户,然后要直接返回到想购买商品的付款页面.你会该如何基于Spring Security实现? S ...

  8. Oracle之rman命令的使用全备输出信息的详解(51CTO风哥rman课程)

    rman连接数据库 rman target/ catalog rman/rman123456 运行全备命令 backup database; 查看备份集 list backupset;

  9. type="submit"

    <?php var_dump($_REQUEST); ?> <form action="" id="javascript_page"> ...

  10. nginx repos

    vim /etc/yum.repos.d/nginx.repo 然后将下面的内容复制进去: [nginx] name=nginx repo baseurl=http://nginx.org/packa ...