【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述
给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
输入
第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
输出
一个整数,表示不同的满足要求的树的个数,无解输出0
样例输入
3
1
-1
-1
样例输出
2
题解
Prufer序列+高精度
Prufer序列:由一棵 $n$ 个点的树唯一产生的一个 $n-2$ 个数的序列。
生成方法:找到这棵树编号最小的叶子节点,将其相邻点加入到序列中,删掉这个点。重复这个过程直到树中只剩下两个点,此时得到的序列即为该树的Prufer序列。
性质:任何一个长度为 $n-2$ ,每个数均在 $1\sum n$ 之间的序列均为一个合法的Prufer序列,对应且只对应着一棵 $n$ 个点的树。
性质:在原树中度数为 $d$ 的点,在Prufer序列中出现了 $d-1$ 次。
根据这两个性质可以考虑本题。给出了每个点的度数限制,即给出了每个点在Prufer序列中出现的次数。对于没给限制的,可以随意选择。
相当于先在 $n-2$ 个数中选出一部分作为没有限制的,剩下的是有限制的。
对于没有限制的,答案就是 $没限制的位置个数^没限制的点的个数$ 。
对于有限制的,使用组合数学的一个公式:长度为 $\sum a_i$ 的序列,第 $i$ 个数出现了 $a_i$ 次的序列数为 $\frac{(\sum a_i)!}{\prod(a_i!)}$ 。
本题不取模,为避免高精度除法,将阶乘分解质因数来处理。
注意特判无解的情况。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 100000000
using namespace std;
typedef long long ll;
struct data
{
int len;
ll v[400];
ll &operator[](int a) {return v[a];}
data operator+(data &a)
{
data ans;
memset(ans.v , 0 , sizeof(ans.v));
int i;
for(i = 0 ; i < len || i < a.len || ans[i] ; i ++ )
ans[i] += v[i] + a[i] , ans[i + 1] = ans[i] / mod , ans[i] %= mod;
ans.len = i;
return ans;
}
data operator*(int a)
{
data ans;
memset(ans.v , 0 , sizeof(ans.v));
int i;
for(i = 0 ; i < len || ans[i] ; i ++ )
ans[i] += v[i] * a , ans[i + 1] = ans[i] / mod , ans[i] %= mod;
ans.len = i;
return ans;
}
void write()
{
int i;
printf("%lld" , v[len - 1]);
for(i = len - 2 ; ~i ; i -- ) printf("%08lld" , v[i]);
puts("");
}
}ans;
int a[1010] , cnt[1010] , prime[1010] , tot , np[1010];
void init()
{
int i , j;
for(i = 2 ; i <= 1000 ; i ++ )
{
if(!np[i]) prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= 1000 ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
}
void solve(int x , int a)
{
int i , j;
for(i = 1 ; i <= tot ; i ++ )
for(j = x / prime[i] ; j ; j /= prime[i])
cnt[i] += a * j;
}
int main()
{
init();
int n , i , c1 = 0 , c2 = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &a[i]);
if(a[i] > 0) c1 += a[i] - 1;
else if(a[i] == -1) c2 ++ ;
else
{
puts("0");
return 0;
}
}
if(c1 > n - 2)
{
puts("0");
return 0;
}
solve(n - 2 , 1) , solve(n - 2 - c1 , -1);
for(i = 1 ; i <= n ; i ++ )
if(a[i] > 0)
solve(a[i] - 1 , -1);
ans[0] = ans.len = 1;
for(i = 1 ; i <= tot ; i ++ )
while(cnt[i] -- )
ans = ans * prime[i];
for(i = 1 ; i <= n - 2 - c1 ; i ++ ) ans = ans * c2;
ans.write();
return 0;
}
【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度的更多相关文章
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- BZOJ 1005 明明的烦恼(prufer序列+高精度)
有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...
- [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
随机推荐
- python append extend区别
1. 列表可包含任何数据类型的元素,单个列表中的元素无须全为同一类型. 2. append() 方法向列表的尾部添加一个新的元素. 3. 列表是以类的形式实现的.“创建”列表实际上是将一个类实例化.因 ...
- 深入Redis 主从复制原理
原文:深入Redis 主从复制原理 1.复制过程 2.数据间的同步 3.全量复制 4.部分复制 5.心跳 6.异步复制 1.复制过程 从节点执行 slaveof 命令. 从节点只是保存了 slaveo ...
- SaltStack入门篇(三)之数据系统Grains、Pillar
1.什么是Grains? Grains是saltstack的组件,用于收集salt-minion在启动时候的信息,又称为静态信息.可以理解为Grains记录着每台Minion的一些常用属性,比如CPU ...
- 创龙OMAPL138的NMI中断
1. 不可屏蔽中断部分代码,注册中断函数,6748有几个NMI的引脚? void InterruptInit(void) { // 初始化 DSP 中断控制器 IntDSPINTCInit(); // ...
- mysql 错误代码 1248
1248 - Every derived table must have its own alias (MYSQL错误) 这句话的意思是说每个派生出来的表都必须有一个自己的别名,给派生表加上一个别名就 ...
- Maven学习(二)-----Maven启用代理访问
Maven启用代理访问 如果你的公司正在建立一个防火墙,并使用HTTP代理服务器来阻止用户直接连接到互联网.如果您使用代理,Maven将无法下载任何依赖. 为了使它工作,你必须声明在 Maven 的配 ...
- cocos2dx2.0 帧动画的创建和播放过程 深入分析
一.帧动画的创建过程帧动画的实现有四个不可或缺的类,如下:1.CCSpriteFrame:精灵帧信息.存储帧动画的每一帧的纹理基本信息. class CC_DLL CCSpriteFrame : pu ...
- ffmpeg 压缩H265 Windows 硬件编码
硬件NVIDIA:ffmpeg.exe -i input.avi -c:v hevc_nvenc -preset:v fast output.mp4 软件 :ffmpeg.exe - ...
- Docker--从安装到搭建环境
docker 1. ubuntu下安装docker 安装docker有两种方法: 一种是用官方的bash脚本一键安装. 直接一条命令就解决了: $ curl -sSL https://get.dock ...
- https双向认证网站搭建
新建网站 在搭建网站证书之前,我们先搭建好我们的网站 1.网站基本搭建 为我们的项目新建一个网站,按照如下的步骤来 1,打开IIS,右键单击网站弹出菜单,选择网站(如图1.1.1) 图1.1.1 2, ...