题意:求n-五边形的生成树个数。

结论题,答案为4*n*5^(n-1).

首先中心的n边形一定需要切掉一个边,C(1,n).

然后每个五边形都切一个边,C(1,4)*5^(n-1).

于是答案就是4*n*5^(n-1).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... int mod[N]; int main ()
{
int T, n;
scanf("%d",&T);
mod[]=; FOR(i,,) mod[i]=mod[i-]*%MOD;
while (T--) {
scanf("%d",&n);
printf("%d\n",*n*mod[n-]%MOD);
}
return ;
}

BZOJ 2467 生成树(组合数学)的更多相关文章

  1. BZOJ 2467 生成树

    当(n-1)条中间的边:4^(n-1)*4*C(n-1,n). ......以此类推Σ. f[n]=Σ(i=0..n-1)4^(i+1)*(n-i)*C(n,i) =Σ(i=0..n-1)4^(i+1 ...

  2. BZOJ 2467 [中山市选2010]生成树(组合数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2467 [题目大意] 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边 ...

  3. BZOJ 2467: [中山市选2010]生成树 [组合计数]

    2467: [中山市选2010]生成树 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 638  Solved: 453[Submit][Status][ ...

  4. BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...

  5. BZOJ 2467: [中山市选2010]生成树

    有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...

  6. 【bzoj 2467】[中山市选2010]生成树(数论--排列组合)

    题目:有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有 ...

  7. BZOJ 2467 解题报告

    对于一个合格的程序员来说,掌握一定的数学知识是非常必要的,所以这次就开个数学专题玩玩. 不多说啥,上题目,我们直接分析题目! 首先ORZ stonepage神犇,一眼就看出我把快速幂写成快速乘了…… ...

  8. BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]

    3997: [TJOI2015]组合数学 题意:\(n*m:\ n \le 1000\)网格图,每个格子有权值.每次从左上角出发,只能向下或右走.经过一个格子权值-1.至少从左上角出发几次所有权值为0 ...

  9. bzoj 1494 生成树计数

    坑了好多天的题,终于补上了 首先发现 \(i\) 这个点和 \(i-k\) 之前的点没有边,所以 \(i-k\) 之前的点肯定联通,只要处理中间 \(k\) 个点的联通状态就好了.我们用最小表示法,\ ...

随机推荐

  1. 20155322 2016-2017-2 《Java程序设计》第9周学习总结

    20155322 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 第9周学习的主要内容是课本的第十六.第十七.第十八章,老师的教学指导上主要要求学习以下知识点 ...

  2. 20155328 2016-2017-2 《Java程序设计》 第一周学习总结

    20155328 2016-2017-2 <Java程序设计> 第一周学习总结 教材学习内容总结 本周学习目标是浏览<Java学习笔记>中的十八章,其中第一章和第二章认真学习, ...

  3. javaWeb项目-文件下载的消息头和编码问题

    一.问题: 做web项目经常提到的一个需求就是页面的文件下载,那么下载的时候在后台为什么要设置响应消息头?为什么这样设置? 二.解决: 1.例子 //设置响应的消息头response.setConte ...

  4. Python3中IO文件操作的常见用法

    首先创建一个文件操作对象: f = open(file, mode, encoding) file指定文件的路径,可以是绝对路径,也可以是相对路径 文件的常见mode: mode = “r”   # ...

  5. xxl_job springboot改造

    代码地址:https://gitee.com/sharehappy/xxl_job_springboot 官方文档:https://github.com/xuxueli/xxl-job/blob/ma ...

  6. python-python爬取妹子图片

    # -*- conding=utf-8 -*- import requests from bs4 import BeautifulSoup import io url = "https:// ...

  7. MAC清理DS_Store和._文件

    打开终端输入 find . -name .DS_Store -type f -delete ; find . -type d | xargs dot_clean

  8. Centos7部署Kubernetes集群(单工作节点)+配置dashboard可视化UI

    目标:docker+kubernetes+cadvosor+dashboard 一:物理硬件 两台虚拟机(centos7):一台做为主节点(master),一台做为工作节点(node) [root@M ...

  9. UVa 10071

    简单运动学公式 v=v0+at x=v0t+1/2*a*t^2=2vt #include<stdio.h> int main() { int v, t; while((scanf(&quo ...

  10. Machine Learning方法总结

    Kmeans——不断松弛(?我的理解)模拟,将点集分成几堆的算法(堆数需要自己定). 局部加权回归(LWR)——非参数学习算法,不用担心自变量幂次选择.(因此当二次欠拟合, 三次过拟合的时候不妨尝试这 ...