题意


\[
\sum _{i=1}^n\sum _{j=1}^nd(ij) \\
d(x)=\sum _{e|x}e
\]

\(n\le 10^9\) 。

分析

没有推出来。这题有几个要点要学习。

第一,推式子要有方向,不能看到什么就动一动,最后搞出来一个算不了的东西。

第二,对于同一个多重和式的不同处理:
\[
\sum _{i=1}^n\sum _{j=1}^{\lfloor\frac{n}{i}\rfloor}=\sum _{j=1}^n\sum _{i=1}^{\lfloor\frac{n}{j}\rfloor}=\sum _{ij\le n}=\sum _{i=1}^n\sum _{j|i}
\]
不同的情况可以用不同的处理,不过最后两种在平常的题目中用的比较少,主要是在推杜教筛表达式的时候会经常使用这种方法。

第三,看到可以化开的东西不要急,先把其他东西处理好,变成一个比较漂亮的形式再处理这个。

第四,求和上界的选取。在推式子的过程中,为了化简,可以把求和上界做一些不影响答案的改动,使得它与其他变量无关。比如说
\[
\sum _{i=1}^n\sum _{j=1}^{\lfloor\frac{n}{i}\rfloor}j\lfloor\frac{n}{ij}\rfloor
\]
这里既然当 \(j>\lfloor\frac{n}{i}\rfloor\) 的时候后面的值为 0,那不如直接把 \(j\) 的求和上界改为 \(n\) ,简化一些条件。

于是就可以开始推这题了。
\[
\begin{aligned}
\sum _{i=1}^n\sum _{j=1}^n\sum _{d|ij}d&=\sum _{i=1}^n\sum _{j=1}^n[\frac{d}{\gcd(d,i)}|j]d \\
&=\sum _{i=1}^n\sum _{d=1}^{n^2}d\lfloor\frac{n\gcd (d,i)}{d}\rfloor && (简化d的求和上界)\\
&=\sum _{e=1}^n\sum _{i=1}^{\lfloor\frac{n}{e}\rfloor}\sum _{d=1}^{\lfloor\frac{n^2}{e}\rfloor}de\lfloor\frac{ne}{de}\rfloor[\gcd(i,d)=1] \\
&=\sum _{e=1}^ne\sum _{i=1}^{\lfloor\frac{n}{e}\rfloor}\sum _{d=1}^{n}d\lfloor\frac{n}{d}\rfloor[\gcd(i,d)=1] && (再次简化d的求和上界) \\
&=\sum _{i=1}^n\sum _{e=1}^{\lfloor\frac{n}{i}\rfloor}e\sum _{d=1}^nd\lfloor\frac{n}{d}\rfloor[\gcd(d,i)=1] \\
&=\sum _{a=1}^n\mu (a)\sum _{i=1}^{\lfloor\frac{n}{a}\rfloor}g(\lfloor\frac{n}{ai}\rfloor)\sum _{d=1}^{\lfloor\frac{n}{a}\rfloor}ad\lfloor\frac{n}{ad}\rfloor
\end{aligned}
\]
令 \(g(n)=\sum _{i=1}^n\lfloor\frac{n}{i}\rfloor,f(n)=\sum _{i=1}^ni\lfloor\frac{n}{i}\rfloor\) ,那么
\[
ans=\sum _{a=1}^na\mu (a)g(\lfloor\frac{n}{a}\rfloor)f(\lfloor\frac{n}{a}\rfloor)
\]
\(O(n^\frac{3}{4})\) 计算。

51nod-1220-约数之和的更多相关文章

  1. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  2. [51Nod 1220] - 约数之和 (杜教筛)

    题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij) 题目分析 ...

  3. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  4. 51Nod 约数之和

                              1220 约数之和                                  题目来源: Project Euler 基准时间限制:3 秒 ...

  5. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  6. 【动态规划】mr359-最大公约数之和

    [题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample ...

  7. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  8. POJ1845Sumdiv题解--约数之和

    题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} ...

  9. 51nod1220 约数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220 $G(n)=\sum\limits_{i=1}^n\sum\lim ...

  10. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

随机推荐

  1. elasticsearch 安装问题

    Elasticsearch5.0 安装问题集锦 elasticsearch 5.0 安装过程中遇到了一些问题,通过查找资料几乎都解决掉了,这里简单记录一下 ,供以后查阅参考,也希望可以帮助遇到同样问题 ...

  2. apt-get 0%

    错误如下:      www.2cto.com   使用apt-get命令安装软件时出现“0%[正在等待报头]“的提示且无法继续安装,一般出现此问题是因为安装过程中Ctrl+C强行中断或其它原因导致上 ...

  3. c#获取已安装的所有NET版本

    /// <summary> /// 获取已安装的所有NET版本 /// </summary> /// <returns></returns> publi ...

  4. Struts2知识点总结

    2 Struts2 1 Struts2 简化Servlet编写 2 Struts2使用步骤 1 添加第三方包 2 在web.xml当中配置核心过滤器 <filter> <filter ...

  5. 【LG3230】[HNOI2013]比赛

    题面 洛谷 题解 代码 \(50pts\) #include<iostream> #include<cstdio> #include<cstdlib> #inclu ...

  6. R的数据读写

    目录 1 简介 在使用任何一款数据分析软件的时候,首先要做的就是数据成功的读写问题,所以不同于其他文档的书写方法,本文将探讨如何读写本地文本文件. 2 运行环境 操作系统:Win10 R版本:R-3. ...

  7. WCF中操作的分界于调用顺序和会话的释放

    操作分界 在WCF操作契约的设计中,有时会有一些调用顺序的业务,有的操作不能最先调用,有的操作必须最后调用,比如在从一个箱子里拿出一件东西的时候,必须先要执行打开箱子的操作,而关上箱子的操作应该在一切 ...

  8. TensorFlow(实战深度学习框架)----深层神经网络(第四章)

    深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最 ...

  9. 解决xampp启动mysql失败

    进入到注册表内 命令:regedit 进入到路径:计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MySQL 修改路径为:" ...

  10. phpldapadmin具体设置

    一.需求    1.属性隐藏 只显示用户名,部门(因为是单OU设计为了做区分),登录密码 2.属性顺序显示 部门>用户名>登录密码 3.使用UID可以登陆 用户可以使用账户(自己的名字)登 ...