需要在大数据集(比如数组或网格) 上面执行计算,涉及到数组的重量级运算操作,可以使用NumPy 库。

下面是一个简单的小例子,展示标准列表对象和NumPy 数组对象之间的差别

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7, 8]
>>> x * 2
[1, 2, 3, 4, 1, 2, 3, 4]
>>> x + 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>> x + y
[1, 2, 3, 4, 5, 6, 7, 8]
>>> # Numpy arrays
>>> import numpy as np
>>> ax = np.array([1, 2, 3, 4])
>>> ay = np.array([5, 6, 7, 8])
>>> ax * 2
array([2, 4, 6, 8])
>>> ax + 10
array([11, 12, 13, 14])
>>> ax + ay
array([ 6, 8, 10, 12])
>>> ax * ay
array([ 5, 12, 21, 32])

正如所见,两种方案中数组的基本数学运算结果并不相同。特别的, NumPy 中的标量运算(比如ax * 2 或ax + 10 ) 会作用在每一个元素上。另外,当两个操作数都是数组的时候执行元素对等位置计算,并最终生成一个新的数组。

对整个数组中所有元素同时执行数学运算可以使得作用在整个数组上的函数运算简单而又快速。比如,如果你想计算多项式的值,可以这样做:

>>> def f(x):
... return 3*x**2 - 2*x + 7
...
>>> f(ax)
array([ 8, 15, 28, 47])

NumPy 还为数组操作提供了大量的通用函数,这些函数可以作为math 模块中类似函数的替代。

>>> np.sqrt(ax)
array([ 1. , 1.41421356, 1.73205081, 2. ])
>>> np.cos(ax)
array([ 0.54030231, -0.41614684, -0.9899925 , -0.65364362])

使用这些通用函数要比循环数组并使用math 模块中的函数执行计算要快的多。因此,只要有可能的话尽量选择NumPy 的数组方案。

底层实现中, NumPy 数组使用了C 或者Fortran 语言的机制分配内存。也就是说,它们是一个非常大的连续的并由同类型数据组成的内存区域。所以,可以构造一个比普通Python 列表大的多的数组。比如,如果你想构造一个10,000*10,000 的浮点数二维网格,很轻松:

>>> grid = np.zeros(shape=(10000,10000), dtype=float)
>>> grid
array([[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]])

所有的普通操作还是会同时作用在所有元素上:

>>> grid += 10
>>> grid
array([[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
...,
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.]])
>>> np.sin(grid)
array([[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
...,
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111]])
>>>

关于NumPy 有一点需要特别的主意,那就是它扩展Python 列表的索引功能- 特别是对于多维数组。为了说明清楚,先构造一个简单的二维数组并试着做些试验:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> # Select row 1
>>> a[1]
array([5, 6, 7, 8])
>>> # Select column 1
>>> a[:,1]
array([ 2, 6, 10])
>>> # Select a subregion and change it
>>> a[1:3, 1:3]
array([[ 6, 7],
[10, 11]])
>>> a[1:3, 1:3] += 10
>>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]]) >>> a + [100, 101, 102, 103]
array([[101, 103, 105, 107],
[105, 117, 119, 111],
[109, 121, 123, 115]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]])
>>> # Conditional assignment on an array
>>> np.where(a < 10, a, 10)
array([[ 1, 2, 3, 4],
[ 5, 10, 10, 8],
[ 9, 10, 10, 10]])

NumPy 是Python 领域中很多科学与工程库的基础,同时也是被广泛使用的最大最复杂的模块。即便如此,在刚开始的时候通过一些简单的例子和玩具程序也能帮我们完成一些有趣的事情。
通常我们导入NumPy 模块的时候会使用语句import numpy as np 。这样的话你就不用再你的程序里面一遍遍的敲入numpy ,只需要输入np 就行了,节省了不少时间。
如果想获取更多的信息, 你当然得去NumPy 官网逛逛了, 网址是: http://www.numpy.org

Python: 大型数组运算的更多相关文章

  1. Python之复数、分数、大型数组数学运算(complex、cmath、numpy、fractions)

    一.复数的数学运算 复数可以用使用函数 complex(real, imag) 或者是带有后缀j的浮点数来指定 a=complex(2,4) print(a) # (2+4j) b=2-5j # 获取 ...

  2. IDL 数组运算

    1.求大.求小和求余 IDL> arr=indgen(4) IDL> print,arr 0 1 2 3 IDL> print,arr>3 3 3 3 3 IDL> pr ...

  3. python数据结构-数组/列表/栈/队列及实现

    首先 我们要分清楚一些概念和他们之间的关系 数组(array)  表(list)  链表(linked list)  数组链表(array list)   队列(queue)  栈(stack) li ...

  4. python使用数组作为索引遍历数组

    python使用数组作为索引遍历数组 觉得有用的话,欢迎一起讨论相互学习~Follow Me python使用数组作为索引遍历数组 import numpy as np a=np.arange(0,5 ...

  5. LeetCode初级算法的Python实现--数组

    LeetCode初级算法的Python实现--数组 # -*- coding: utf-8 -*- """ @Created on 2018/6/3 17:06 @aut ...

  6. python的三元运算

    python的三元运算是先输出结果,再判定条件.其格式如下: >>> def f(x,y): return x - y if x>y else abs(x-y) #如果x大于y ...

  7. Python检查数组元素是否存在类似PHPisset()方法

    Python检查数组元素是否存在类似PHP isset()方法 sset方法来检查数组元素是否存在,在Python中无对应函数,在Python中一般可以通过异常来处理数组元素不存在的情况,而无须事先检 ...

  8. python字符串的运算有哪些

    python字符串的运算有哪些 1,链接符号 + 2,判断字符串是否在某个字符串中 ‘s’ in ‘this’ 返回bool 3,字符串索引 a="this a my" a[0], ...

  9. Python 切分数组,将一个数组均匀切分成多个数组

    Python 切分数组 将一个数组,均分为多个数组 代码 # -*- coding:utf-8 -*- # py3 def list_split(items, n): return [items[i: ...

随机推荐

  1. Linux wc 命令

    wc命令可以用来统计文件的行数 .单词数 .字符数,用法如下: [root@localhost ~]$ wc 1.txt # 统计文件的行数.单词数.字符数 2 4 24 1.txt [root@lo ...

  2. 关于C中I/O缓冲区的解释

    用户程序调用C标准I/O库函数读写文件或设备,而这些库函数要通过系统调用把读写请求传给内核,最终由内核驱动磁盘或设备完成I/O操作.C标准库为每个打开的文件分配一个I/O缓冲区以加速读写操作,通过文件 ...

  3. windows10 专业版激活工具

    分享一个激活工具: 链接:https://pan.baidu.com/s/1HsdAKuxxsdvzZ282k7HtMg 提取码:tqe0

  4. poj_2752 kmp

    题目大意 给定字符串S,求出S的所有可能相同前后缀的长度.比如: "alala"的前缀分别为{"a", "al", "ala&qu ...

  5. c++ 函数返回研究[转]

    一,c++函数的返回分为以下几种情况 1)主函数main的返回值:这里提及一点,返回0表示程序运行成功. 2)返回非引用类型:函数的返回值用于初始化在跳用函数出创建的临时对象.用函数返回值初始化临时对 ...

  6. 【BZOJ5085】最大 鸽巢原理

    [BZOJ5085]最大 Description 给你一个n×m的矩形,要你找一个子矩形,价值为左上角左下角右上角右下角这四个数的最小值,要你最大化矩形的价值. Input 第一行两个数n,m,接下来 ...

  7. 微信小程序 --- 文件的上传和下载

    文件上传 / 文件下载 : wx.uploadFile

  8. 【css预处理器】------sass的基本语法------【巷子】

    001.安装sass 1.删除gem源:gem sources --remove https://rubygems.org/ 2.添加国内源:gem sources -a http://gems.ru ...

  9. Java开发环境的搭建(jdk,eclipse)

    一.java 开发环境的搭建 这里主要说的是在windows 环境下怎么配置环境. 1.首先安装JDK java的sdk简称JDK ,去其官方网站下载最近的JDK即可. http://www.orac ...

  10. 云计算之路-阿里云上:消灭“黑色n秒”第一招——不让CPU空闲

    昨天对“黑色n秒”问题的最终猜想以失败而告终,从而让我们结束了被动猜想阶段,进入了主动进攻阶段——出招. 今天出第一招——用C#写个小程序,让其在每个CPU核上运行一个线程,不让任何一个CPU核进入空 ...