P3312 [SDOI2014]数表

题目描述

有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\(i\)和\(j\)的所有自然数之和。给定\(a\),计算数表中不大于\(a\)的数之和。

输入输出格式

输入格式:

输入包含多组数据。

输入的第一行一个整数\(Q\)表示测试点内的数据组数

接下来\(Q\)行,每行三个整数\(n\),\(m\),\(a\)(\(|a| \le 10^9\))描述一组数据。

输出格式:

对每组数据,输出一行一个整数,表示答案模\(2^{31}\)的值。

说明

\(1 \le N,M\le 10^5\) , \(1 \le Q \le 2*10^4\)


按道理就是先不管条件。

然后化简式子得到了

\[\sum_{k=1}^{\min(n,m)}k\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor
\]

想想确实不能拿掉一些东西,否则没法做。

想到有\(\mathbf {Id}=\sigma*\mu\)

于是把式子拆开

\[\sum_{k=1}^{\min(n,m)}\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\sum_{d|k}\sigma(d)\mu(\frac{k}{d})
\]

或者换个方向反演也可以得到这个式子。

我们知道格子\((i,j)\)的值就是\(\sigma(gcd(i,j))\)

于是我们可以离线读入,然后从小到大把\(\sigma\)加入前缀和。

具体的,可以拿一个树状数组维护\(\sum_{d|k}\sigma(d)\mu(\frac{k}{d})\)的前缀和,然后每次查询或者加一些东西进去就可以了。

复杂度\(O(n\log^2n+Q\sqrt n\log n)\)


Code:

#include <cstdio>
#include <algorithm>
const int N=1e5;
std::pair <int,int> sigma[N+10];
int mu[N+10],v[N+10];
void init()
{
for(int i=1;i<=N;i++) mu[i]=1,sigma[i]=std::make_pair(i+1,i);
sigma[1].first=1;
for(int i=2;i<=N;i++)
{
if(!v[i]) mu[i]=-1;
for(int j=i*2;j<=N;j+=i)
{
sigma[j].first+=i;
if(!v[i])
{
if((j/i)%i==0) mu[j]=0;
else mu[j]*=-1;
v[j]=1;
}
}
}
std::sort(sigma+1,sigma+1+N);
}
int min(int x,int y){return x<y?x:y;}
struct node
{
int n,m,a,id;
bool friend operator <(node n1,node n2){return n1.a<n2.a;}
}qry[N+10];
int s[N+10],ans[N+10],pos=1,T;
void add(int p,int d){while(p<=N)s[p]+=d,p+=p&-p;}
int ask(int p){int sum=0;while(p)sum+=s[p],p-=p&-p;return sum;}
void change(int d)
{
while(sigma[pos].first<=d&&pos<=N)
{
for(int i=sigma[pos].second;i<=N;i+=sigma[pos].second)
add(i,sigma[pos].first*mu[i/sigma[pos].second]);
++pos;
}
}
int main()
{
init();
scanf("%d",&T);
for(int i=1;i<=T;i++)
scanf("%d%d%d",&qry[i].n,&qry[i].m,&qry[i].a),qry[i].id=i;
std::sort(qry+1,qry+1+T);
for(int i=1;i<=T;i++)
{
change(qry[i].a);
int n=qry[i].n,m=qry[i].m,sum=0;
for(int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
sum+=(n/l)*(m/l)*(ask(r)-ask(l-1));
}
ans[qry[i].id]=sum&0x7fffffff;
}
for(int i=1;i<=T;i++) printf("%d\n",ans[i]);
return 0;
}

2018.11.26

洛谷 P3312 [SDOI2014]数表 解题报告的更多相关文章

  1. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  2. 洛谷 P3313 [SDOI2014]旅行 解题报告

    P3313 [SDOI2014]旅行 题目描述 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教 ...

  3. [bzoj3529] [洛谷P3312] [Sdoi2014] 数表

    Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  4. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  5. 洛谷 P3312 [SDOI2014]数表

    式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...

  6. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  7. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  8. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  9. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

随机推荐

  1. Linux 防火墙设置(转)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  2. 使用GitLab创建项目

  3. 天下武功,无快不破,Python开发必备的6个库

    01 Python 必备之 PyPy PyPy 主要用于何处? 如果你需要更快的 Python 应用程序,最简单的实现的方法就是通过 PyPy ,Python 运行时与实时(JIT)编译器.与使用普通 ...

  4. Linux系统服务(daemon)(鸟哥Linux私房菜笔记)

    Linux系统服务(daemon) 一.SystemV的init管理机制(脚本式启动)1.服务启动分类stand alone 独立启动模式super daemon 总管程序 2.服务的启动.关闭与观察 ...

  5. UVa 10071

    简单运动学公式 v=v0+at x=v0t+1/2*a*t^2=2vt #include<stdio.h> int main() { int v, t; while((scanf(&quo ...

  6. 使用SKlearn(Sci-Kit Learn)进行SVR模型学习

    今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...

  7. 亚马逊首次推出卖家APP 可掌握商品盈利状况

    美国零售巨头亚马逊近日首次对外发布了第一款针对卖家和商户的客户端,帮助他们更加高效的管理商品和销售数据. 据美国科技新闻网站 Mashable 报道,之前亚马逊在商户移动客户端方面一直空缺,许多商户不 ...

  8. ASP.NET Web API - 使用 Castle Windsor 依赖注入

    示例代码 项目启动时,创建依赖注入容器 定义一静态容器 IWindsorContainer private static IWindsorContainer _container; 在 Applica ...

  9. JS - Promise使用详解--摘抄笔记

    第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...

  10. CocoaPods 创建私有仓库

    这里有个坑首先需要注意,创建私有cocoapods仓库需要两个git仓库,即代码仓库,Specs文件仓库. 一.创建私有库 1.创建自己源码仓库,假设是A.git; 2.对A仓库: git add . ...