【BZOJ4361】isn(动态规划,容斥)

题面

BZOJ

题解

首先我们如果确定了一个不降序列,假设它的长度为\(i\),

那么可行的方案数为\(i*(n-i)!\),但是这样有一些非法的情况,即删掉最后一个数之前已经是有序的了。

那么设\(g[i]\)表示长度为\(i\)的不降序列的总数

因为所有长度为\(i\)的不降序列一定包含在长度为\(i+1\)的不降序列之中

如果先构成了一个长度为\(i+1\)的不降序列,再删掉了一位,那么这样是不合法的。

所以长度为\(i\)的不降序列的贡献为:

\[g[i]*(n-i)!-g[i+1]*(n-i-1)!*(i+1)
\]

即先构成了一个长度为\(i+1\)的不降序列,再枚举删去了哪个数构成了长度为\(i\)的不降序列。

至于\(i\)怎么算,可以设\(f[i][j]\)表示以\(i\)结尾,长度为\(j\)的不降序列的个数

\(f[i][j]=\sum f[k][j-1](a[k]\le a[i])\)

树状数组优化一下就好了

时间复杂度\(O(n^2logn)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 2002
#define MOD 1000000007
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int a[MAX],n,S[MAX],len;
int f[MAX][MAX],g[MAX];
int c[MAX],jc[MAX],ans;
int lb(int x){return x&(-x);}
void modify(int x,int w){while(x<=len)add(c[x],w),x+=lb(x);}
int getsum(int x){int ret=0;while(x)add(ret,c[x]),x-=lb(x);return ret;}
int main()
{
n=read();jc[0]=1;
for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n;++i)a[i]=S[++len]=read();S[++len]=0;
sort(&S[1],&S[len+1]);len=unique(&S[1],&S[len+1])-S-1;
for(int i=0;i<=n;++i)a[i]=lower_bound(&S[1],&S[len+1],a[i])-S;
f[0][0]=1;
for(int j=1;j<=n;++j)
{
memset(c,0,sizeof(c));
for(int i=1;i<=n;++i)
{
modify(a[i-1],f[i-1][j-1]);
f[i][j]=getsum(a[i]);
add(g[j],f[i][j]);
}
}
add(ans,g[n]);
for(int i=n-1;i;--i)
add(ans,(1ll*g[i]*jc[n-i]%MOD-1ll*g[i+1]*jc[n-i-1]%MOD*(i+1)%MOD+MOD)%MOD);
printf("%d\n",ans);
}

【BZOJ4361】isn(动态规划,容斥)的更多相关文章

  1. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  2. bzoj4361:isn(dp+容斥+树状数组)

    题面 darkbzoj 题解 \(g[i]\)表示长度为\(i\)的非降序列的个数 那么, \[ ans = \sum_{i=1}^{n}g[i]*(n-i)!-g[i+1]*(n-i-1)!*(i+ ...

  3. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  4. 【BZOJ5287】[HNOI2018]毒瘤(动态规划,容斥)

    [BZOJ5287][HNOI2018]毒瘤(动态规划,容斥) 题面 BZOJ 洛谷 题解 考场上想到的暴力做法是容斥: 因为\(m-n\le 10\),所以最多会多出来\(11\)条非树边. 如果就 ...

  5. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

  6. 【BZOJ2024】舞会(动态规划,容斥,高精度)

    [BZOJ2024]舞会(动态规划,容斥,高精度) 题面 BZOJ 洛谷 题解 这种关系显然要先排序才不会不想影响. 设\(f[i][j]\)表示前\(i\)个女生中,选了\(j\)个女生配对,并且女 ...

  7. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  8. 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)

    [BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...

  9. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

随机推荐

  1. 【Unity3d】ScriptableObject的简单用法

      ScriptableObject非常适合小数量的游戏数值. 使用ScriptableObject的时候需要注意,生成ScriptableObject数据文件需要自己写Editor代码实现. 大概的 ...

  2. python登录验证码生成及自动化测试规避

    在用django写论坛的时候,需要有登录及注册功能. 故就登录界面后端需要生成随机验证码并传值给前端的代码进行编写如下. 验证码生成png需要调用到python的图形库 生成注册码img import ...

  3. 【java请求】- jmeter_jdbc脚本实战

    一,导入 使用Jmeter运行Java脚本,需要用到Jmeter的提供的框架jar包(分别在jmeter目录下的lib和ext目录下)1.ApacheJMeter_core.jar2.ApacheJM ...

  4. 该用哪个:Redis与Memcached之间如何选择呢?

    华为云分布式缓存Redis5.0和Memcached都是华为云DCS的核心产品. 那么在不同的使用场景之下,如何选择Redis5.0和Memcached呢? 就由小编为大家进行详细的数据对比分析吧 R ...

  5. 技本功丨用短平快的方式告诉你:Flink-SQL的扩展实现

    2019年1月28日,阿里云宣布开源“计算王牌”实时计算平台Blink回馈给ApacheFlink社区.官方称,计算延迟已经降到毫秒级,也就是你在浏览网页的时候,眨了一下眼睛,淘宝.天猫处理的信息已经 ...

  6. 【Pthon入门学习】利用slice实现str的strip函数,类似C#中的string.trim

    1.先了解下切片的知识点 切片是str, list,tuple中常用的取部分元素的操作. 例如: L =['北京', '上海', '天津', '深圳', '石家庄'] print(L[0:2]) # ...

  7. 腾讯视频qlv格式转换MP4普通视频方法

    QLV格式视频不是那么好对付的,似乎是一种加密格式,试着把.qlv改成.mp4或.flv都没有用,用格式工厂等转换软件转换也根本无法识别.但这并不意味着没有办法,其实真正的方法是不用任何工具: 1,我 ...

  8. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  9. react-native debug js remotely跨域问题

    react-native debug js remotely跨域问题 我们在安卓真机上调试react-native时,启用debug js remotely的时候,会出现跨域问题.这个时候我们只需要一 ...

  10. 第七次作业PSP

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图