传送门

题解

题面大意:

\(0.\)区间加节点

\(1.\)区间换根

\(2.\)单点询问距离

如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询问即可

有\(1\)操作怎么办?

上面挖掘了一点性质,

加节点加在下面,那么我们可以先把节点都加上去,再询问

那么把操作离线,

先按操作位置排序,再按操作排序(\(0,1\)先),再按时间排序

对于\(0,1\)操作都新建节点

\(0\)建实点

\(1\)建虚点

\(0\)操作的点将连向最后的\(1\)操作

默认每个\(1\)操作连向上一个操作(加点直接加在\(1\)下面)

现在唯一的问题即是\(1\)操作

我们想一下\(pos\)转移到\(pos+1\)

由于一些换根操作

树的形态会发生改变

假如一个换根操作\([l,r]\)

\(x\)换到\(y\)

\(l-1\),根是\(x\)

\(l\),根是\(y\)

那么改变的地方就是把在\(x->y\)操作之后接上\(x\)的点,全部接到\(y\)下面

一个一个挪肯定不行

所以需要一个虚点,挪的话只要挪这一个点

如果没有理解,可以想想,哪些点会连向这个虚点?

一定是时间在它之后的点

没换根之前,这些点都会连向\(x\)

那么问题就解决了..

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 500010;
int ch[N][2], val[N], sum[N], fa[N], tot;
bool isroot(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
#define get(x) (ch[fa[x]][1] == x)
void pushup(int x) { sum[x] = sum[ch[x][0]] + sum[ch[x][1]] + val[x]; }
void rotate(int x) {
int y = fa[x], z = fa[y], k = get(x);
if (!isroot(y)) ch[z][get(y)] = x; fa[x] = z;
ch[y][k] = ch[x][k ^ 1]; fa[ch[x][k ^ 1]] = y;
ch[x][k ^ 1] = y; fa[y] = x;
pushup(y);
}
void splay(int x) {
while (!isroot(x)) {
int y = fa[x];
if (!isroot(y))
(get(x) ^ get(y)) ? rotate(x) : rotate(y);
rotate(x);
}
pushup(x);
}
int access(int x) {
int y = 0; for (; x; y = x, x = fa[x]) splay(x), ch[x][1] = y, pushup(x);
return y;
}
void link(int x, int y) { access(x); splay(x); fa[x] = y; }
void cut(int x) { access(x); splay(x); ch[x][0] = fa[ch[x][0]] = 0; pushup(x); }
void newnode(int x) { val[++tot] = x; sum[tot] = x; }
int L[N], R[N], id[N], len;
struct node {
int pos, op, x, y;
bool operator < (const node &z) const {
return pos == z.pos ? op < z.op : pos < z.pos;
}
}q[N];
int ans[N];
int query(int x, int y) {
int ans = 0, lca;
access(x), splay(x); ans += sum[x];
lca = access(y), splay(y), ans += sum[y];
access(lca), splay(lca), ans -= 2 * sum[lca];
return ans;
}
int main() {
int n, m, cnt = 1, last = 2, qs = 0;
read(n), read(m);
newnode(1); L[1] = 1, R[1] = n; id[1] = 1;
newnode(0); link(2, 1);
for (int i = 1; i <= m; i++) {
int op; read(op);
if (!op) {
int l, r;
read(l), read(r);
newnode(1);
L[++cnt] = l, R[cnt] = r, id[cnt] = tot;
q[++len] = (node) {1, i - m, tot, last};
}
else if (op == 1) {
int l, r, x;
read(l), read(r), read(x);
l = max(l, L[x]), r = min(r, R[x]);
if (l <= r) {
newnode(0); link(tot, last);
q[++len] = (node) {l, i - m, tot, id[x]};
q[++len] = (node) {r + 1, i - m, tot, last};
last = tot;
}
}
else {
int x, u, v;
read(x), read(u), read(v);
q[++len] = (node) {x, ++qs, id[u], id[v]};
}
}
sort(q + 1, q + len + 1);
int j = 1;
for (int i = 1; i <= n; i++)
while (i == q[j].pos && j <= len) {
if (q[j].op <= 0) cut(q[j].x), link(q[j].x, q[j].y);
else ans[q[j].op] = query(q[j].x, q[j].y);
j++;
}
for (int i = 1; i <= qs; i++) printf("%d\n", ans[i]);
return 0;
}

P3348 [ZJOI2016]大森林(Link-cut-tree)的更多相关文章

  1. [BJOI2014]大融合(Link Cut Tree)

    [BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...

  2. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  3. ●洛谷P3348 [ZJOI2016]大森林

    题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...

  4. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  5. [NOI2014] 魔法森林 - Link Cut Tree

    [NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...

  6. P3348 [ZJOI2016]大森林(LCT)

    Luogu3348 BZOJ4573 LOJ2092 题解 对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上.这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\( ...

  7. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  8. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  9. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

随机推荐

  1. centos7 dubbokeeper安装

    下载dubbokeeper源码 git clone https://github.com/dubboclub/dubbokeeper   mysql 先执行install-mysql.sh   编译好 ...

  2. SLAM拾萃(2):doxygen

    今天给大家介绍一下doxygen.这个工具由来已久了,至少08年左右就已经在用了,但是目前还没见到好的介绍.我个人觉得这是个很简单易用的工具,但是为什么看了别人介绍反而觉得复杂了……所以趁着今天比较闲 ...

  3. spring 启动完成后事件监听器处理

    有时候我们在spring容器启动完成后,我们需要做一些处理动作,这个时候怎么做呢? spring提供了事件监听器的处理机制. spring提供了内置的几类的事件: ContextClosedEvent ...

  4. HAService 刨坑

    High availability is a characteristic of a system, which describes the duration (length of time) for ...

  5. windows7 不能更新,提示:"WindowsUpdate_80240016" "WindowsUpdate_dt000",如何解决?

    计算机(右键) ---- 管理 -------- 服务和应用程序 -----服务(找到名称为windows update的服务,并且在windwos update服务右键 选择重新启动 ) 再次安装更 ...

  6. polymer入门例子-已过时

    这个教程挺不错!:http://blog.csdn.net/renfufei/article/details/37040883 过时了,现在的版本已经为1.0了 一:创建APP结构 本教程会使用预先构 ...

  7. 前端与HTTP

    本文整理在,我的github 上.欢迎Star. 各版本的http 发展 在HTTP建立之初,主要是为了传输超文本标记语言(HTML)文档.随着时代的发展,也进行了若干次演进.下图是各个版本发布的时间 ...

  8. HTML5、CSS3与响应式Web设计入门(1)

    HTML5与CSS3已经当仁不让的成为了这两年Web界最火爆的词,他们似乎在HTML4和CSS2统治了Web很多年之后的某一天突然爆发,然 后一直占据着所有Web开发者的视野.HTML5本身就是一个很 ...

  9. C#Encoding

    1.Encoding (1).如何生成一个Encoding即一种编码 Encoding位于System.Text命名空间下,是一个抽象类,它的派生类如下图: 要实例化一个Encoding一共有以下两种 ...

  10. django def validate_column和validate

    VIewDemo class RegUserSet(mixins.CreateModelMixin,viewsets.GenericViewSet): serializer_class = RegUs ...