Description

The cow bicycling team consists of N (1 <= N <= 20) cyclists. They wish to determine a race strategy which will get one of them across the finish line as fast as possible.

Like everyone else, cows race bicycles in packs because that's the most efficient way to beat the wind. While travelling at x laps/minute (x is always an integer), the head of the pack expends x*x energy/minute while the rest of pack drafts behind him using only x energy/minute. Switching leaders requires no time though can only happen after an integer number of minutes. Of course, cows can drop out of the race at any time.

The cows have entered a race D (1 <= D <= 100) laps long. Each cow has the same initial energy, E (1 <= E <= 100).

What is the fastest possible finishing time? Only one cow has to cross the line. The finish time is an integer. Overshooting the line during some minute is no different than barely reaching it at the beginning of the next minute (though the cow must have the energy left to cycle the entire minute). N, D, and E are integers.

Input

A single line with three integers: N, E, and D 

Output

A single line with the integer that is the fastest possible finishing time for the fastest possible cow. Output 0 if the cows are not strong enough to finish the race. 

Sample Input

3 30 20

Sample Output

7

Hint

[as shown in this chart:

leader E

pack total used this

time leader speed dist minute

1 1 5 5 25

2 1 2 7 4

3 2* 4 11 16

4 2 2 13 4

5 3* 3 16 9

6 3 2 18 4

7 3 2 20 4

* = leader switch

思路:

1. dp[i][d][e] 表示第 i 头牛使用能量 e 跑 d 圈的最小分钟数假如该牛无法跑完, 则值为 INF.

讨论:

当第 i 头牛领跑时

锁定一头牛后, 假设 dp[d][e] 对应牛使用能量 e 跑 d 圈的最小分钟数, dp[][] 可用完全背包计算

for(int d = 1; d <= D; d++) {
for(int e = 1; e <= E; e++) {
for(int k = 1; k*k <= e && k <= d; k ++) {//完全背包
dp[d][e] = min(dp[d][e], dp[d-k][e-k*k]+1)
}
}
}

第 i 头牛总是作为领跑, 第 i+1 头牛享受 i 头牛的成果

dp[i+1][d][d] = min(dp[i+1][d][d], dp[i][d][e]);

这个状态转移的方程理解为: 当前由第 i 头牛领跑, 第 i+1 头牛享受成果, 即跑了几圈就耗费多少能量. 注意, dp[i][d][e] 中, e >= d, 不管第 i 头牛怎么跑, 只要它跑了 d 圈, i+1 头牛就耗费了 d 的能量.

dp[i+1][d][d] 是对第 i+1 头牛进行初始化, 在代码中也可以看出, 第 i 头牛更新第 i+1 头牛的dp[][][]

总结:

1. 每头牛, 自己跑的时候使用了一次 dp, 牛与牛之间又使用了一次 dp

2. 递推关系仅建立在相邻的两头牛之间, 后面一头牛继承前面那头牛的最小时间

代码:

#include <iostream>
using namespace std; const int INF = 0X3F3F3F3F;
const int MAXN = 30;
int N, E, D;
int dp[30][110][110];
int main() { freopen("E:\\Copy\\ACM\\poj\\1661\\in.txt", "r", stdin);
while(cin >> N >> E >> D) {
for(int i = 0; i <= N; i ++)
for(int j = 0; j <= D; j ++)
for(int k = 0; k <= E; k++)
dp[i][j][k] = INF;
dp[1][0][0] = 0;
for(int i = 1; i <= N; i ++) {
for(int j = 1; j <= D; j++) {
for(int k = 1; k <= E; k++) {
for(int s = 1; s*s <= k && s <= j; s ++) {
dp[i][j][k] = min(dp[i][j][k], dp[i][j-s][k-s*s]+1);
}
dp[i+1][j][j] = min(dp[i+1][j][j], dp[i][j][k]); // 第 i+1 头牛继承第 i 头牛的成果
}
}
}
int ans = INF;
for(int k = 1; k <= E; k ++)
ans = min(ans, dp[N][D][k]);
cout << ans << endl;
}
return 0;
}

  

POJ 1946 Cow Cycling(抽象背包, 多阶段DP)的更多相关文章

  1. POJ 1946 Cow Cycling

    Cow Cycling Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 2516   Accepted: 1396 Descr ...

  2. [POJ 2184]--Cow Exhibition(0-1背包变形)

    题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. POJ 2184 Cow Exhibition (01背包变形)(或者搜索)

    Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10342   Accepted: 4048 D ...

  4. POJ 2184 Cow Exhibition (01背包的变形)

    本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...

  5. poj 2184 Cow Exhibition(背包变形)

    这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...

  6. POJ 2184 Cow Exhibition 01背包

    题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负   且 sum(x[k]) >= 0 sum(y[k] ...

  7. POJ 2184 Cow Exhibition(背包)

    希望Total Smart和Totol Funess都尽量大,两者之间的关系是鱼和熊掌.这种矛盾和背包的容量和价值相似. dp[第i只牛][j = 当前TotS] = 最大的TotF. dp[i][j ...

  8. poj 1964 Cow Cycling(dp)

    /* 一开始想的二维的 只维护第几只牛还有圈数 后来发现每只牛的能量是跟随每个状态的 所以再加一维 f[i][j][k]表示第i只牛 领跑的j全 已经消耗了k体力 转移的话分两类 1.换一只牛领跑 那 ...

  9. POJ 2184 Cow Exhibition【01背包+负数(经典)】

    POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...

随机推荐

  1. JS学习笔记(6)--音乐播放器

    说明(2017.3.15): 1. lrc.js里面存储LRC歌词的格式的数组,获取里面的时间轴,转为秒数. 2. 通过audio.currentTime属性,setinterval每秒获取歌曲播放的 ...

  2. IOS UITableView的代理方法详解

    一.UITableViewDataSourc(数据源代理) 1.必须实现的回调方法 返回每个分区的行数 - (NSInteger)tableView:(UITableView *)tableView ...

  3. C语言 · 三个整数的排序

    算法提高 三个整数的排序   时间限制:1.0s   内存限制:256.0MB      问题描述 输入三个数,比较其大小,并从大到小输出. 输入格式 一行三个整数. 输出格式 一行三个整数,从大到小 ...

  4. 动态标绘演示系统1.0(for OpenLayers3)

    实现OpenLayers3(http://openlayers.org)版本号的动态标绘API.眼下1.0版本号,仅支持简单符号绘制. 在线体验地址:http://gispace.duapp.com/ ...

  5. Specified VM install not found: type Standard VM, name jdk1.6...

    运行ant的时候出现 Specified VM install not found: type Standard VM, name.... 搞了好久..汗汗 尝试删除这些文件: ... / .meta ...

  6. jquery easy ui 简单字段选择搜索实现

    code <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title& ...

  7. Js加密与解密

    <html><head><META HTTP-EQUIV="MSThemeCompatible" CONTENT="Yes"> ...

  8. SparkR:数据科学家的新利器

    摘要:R是数据科学家中最流行的编程语言和环境之一,在Spark中加入对R的支持是社区中较受关注的话题.作为增强Spark对数据科学家群体吸引力的最新举措,最近发布的Spark 1.4版本在现有的Sca ...

  9. thinkphp 操作mssql2008

    配置文件 <?php return array( //'配置项'=>'配置值' //'USERNAME'=>'admin', //赋值 //数据库配置信息 'DB_TYPE' =&g ...

  10. imx6 hdmi接口支持

    /************************************************************* * imx6 hdmi接口支持 * 新的板子需要使用到hdmi,今天就测试 ...