codeforce 148D. Bag of mice[概率dp]
2 seconds
256 megabytes
standard input
standard output
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.
1 3
0.500000000
5 5
0.658730159
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
#include<cstdio>
#include<algorithm>
typedef double DB;
using namespace std;
const int N=;
double f[N][N];
bool vis[N][N];
int n,m;
double dfs(int w,int b){
if(w<=) return ;
if(b<=) return ;
if(vis[w][b]) return f[w][b];
vis[w][b]=;
double &res=f[w][b];
res=w*1.0/(w+b);
if(b>=){
double tmp=b*1.0/(w+b);
b--;
tmp*=b*1.0/(w+b);
b--;
//取完之后的发生概率:φ*(white+black)
res+=tmp*(w*1.0/(w+b)*dfs(w-,b)+b*1.0/(w+b)*dfs(w,b-));
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
printf("%.9lf",dfs(n,m));
return ;
}
codeforce 148D. Bag of mice[概率dp]的更多相关文章
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- CF 148D. Bag of mice (可能性DP)
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- Codeforces Round #105 D. Bag of mice 概率dp
http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...
随机推荐
- [LintCode]判断一个字符串是否包含另一个字符串的所有字符
问题描述: 比较两个字符串A和B,确定A中是否包含B中所有的字符.字符串A和B中的字符都是 大写字母. 样例 给出 A = "ABCD" B = "ACD",返 ...
- Timsort 算法
转载自:http://blog.csdn.net/yangzhongblog/article/details/8184707 Timsort是结合了合并排序(merge sort)和插入排序(inse ...
- Applet Mode
https://github.com/threerings/getdown/wiki/Applet-Mode ————————————————————————————————————————————— ...
- 06 Locking and Latching
本章提要---------------------------------------------------------------6,7,8,9,10,11 这 6 章要细看, 从本章开始how ...
- 在jsp页面比较时间的大小
//-----------------------------------------------------controller-------------------- Calendar c = C ...
- 在使用R做数据挖掘时,最常用的数据结构莫过于dataframe了,下面列出几种常见的dataframe的操作方法
原网址 http://blog.sina.com.cn/s/blog_6bb07f83010152z0.html 在使用R做数据挖掘时,最常用的数据结构莫过于dataframe了,下面列出几种常见的d ...
- 基于Python的测试驱动开发实战
近年来测试驱动开发(TDD)受到越来越多的关注.这是一个持续改进的过程,能从一开始就形成规范,帮助提高代码质量.这是切实可行的而非天马行空的. TDD的全过程是非常简单的.借助TDD,代码质量会得到提 ...
- [oracle] oracle-ibatis-整理
① <!-- 复用sql代码 --> <sql id="CUSTOM_CABINET_INFO.QUERY_CABINET"> <dynamic pr ...
- spark学习系列
转自: http://www.cnblogs.com/magj2006/p/4316264.html spark 系列文章汇总 源码导读 spark 源码导读1 从spark启动脚本开始 spark ...
- 机器学习性能评估指标(精确率、召回率、ROC、AUC)
http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2