D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Examples
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

#include<cstdio>
#include<algorithm>
typedef double DB;
using namespace std;
const int N=;
double f[N][N];
bool vis[N][N];
int n,m;
double dfs(int w,int b){
if(w<=) return ;
if(b<=) return ;
if(vis[w][b]) return f[w][b];
vis[w][b]=;
double &res=f[w][b];
res=w*1.0/(w+b);
if(b>=){
double tmp=b*1.0/(w+b);
b--;
tmp*=b*1.0/(w+b);
b--;
//取完之后的发生概率:φ*(white+black)
res+=tmp*(w*1.0/(w+b)*dfs(w-,b)+b*1.0/(w+b)*dfs(w,b-));
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
printf("%.9lf",dfs(n,m));
return ;
}

codeforce 148D. Bag of mice[概率dp]的更多相关文章

  1. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  2. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  6. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  7. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  9. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

随机推荐

  1. node-webkit读取json文件

    1.原理 node-webkit包含了node.js,node.js提供了处理json数据文件的方法,通过node.js提供的方法,我们可以比较方便地读取json文件. 2.示例 这里我们读取的文件是 ...

  2. js学习笔记14----DOM概念及子节点类型

    1.概念 DOM:Document Object Model---文档对象模型 文档:html页面 文档对象:页面中的元素 文档对象模型:是一种定义,为了能够让程序(js)去操作页面中的元素. DOM ...

  3. 给原型扩展一下tirm方法

    方便以后,直记录下来 <script type="text/javascript"> //给原型护展tirm方法 String.prototype.trim=funct ...

  4. javaScript之function定义

    背景知识 函数定义 在javaScript中,function的定义有3种: 1.匿名定义                function(){} 2.非匿名定义                fun ...

  5. tensorflow函数学习笔记

    https://www.w3cschool.cn/tensorflow_python/tensorflow_python-4isv2ez3.html tf.trainable_variables返回的 ...

  6. ffmpeg avformat_open_input返回失败的解决办法

    用ffmpeg做的第一个程序,参考网上的代码,就出现了一些问题,其中avformat_open_input返回失败. 下面是我在网上收集到的失败信息的相关解决: /////////////////// ...

  7. php header函数下载文件实现代码

    在php中header函数的使用很大,header不但可以向客户端发送原始的 HTTP 报头信息,同时还可以直接实现文件下载操作 header函数最常用的不是用于下载而是用于发送http类的 跳转 它 ...

  8. Android Looper详解

    在Android下面也有多线程的概念,在C/C++中,子线程可以是一个函数, 一般都是一个带有循环的函数,来处理某些数据,优先线程只是一个复杂的运算过程,所以可能不需要while循环,运算完成,函数结 ...

  9. circso 对数据进行可视化

    circos可以用来绘制圈图,能够对染色体上的数据进行可视化,首先需要一个染色体的文件 染色体的文件如下,每列之间空格分隔 chr - chr1 chr1 chr - chr2 chr2 chr - ...

  10. datepicker防手动输入

    在<input>中加入readonly="readonly"