D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Examples
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

#include<cstdio>
#include<algorithm>
typedef double DB;
using namespace std;
const int N=;
double f[N][N];
bool vis[N][N];
int n,m;
double dfs(int w,int b){
if(w<=) return ;
if(b<=) return ;
if(vis[w][b]) return f[w][b];
vis[w][b]=;
double &res=f[w][b];
res=w*1.0/(w+b);
if(b>=){
double tmp=b*1.0/(w+b);
b--;
tmp*=b*1.0/(w+b);
b--;
//取完之后的发生概率:φ*(white+black)
res+=tmp*(w*1.0/(w+b)*dfs(w-,b)+b*1.0/(w+b)*dfs(w,b-));
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
printf("%.9lf",dfs(n,m));
return ;
}

codeforce 148D. Bag of mice[概率dp]的更多相关文章

  1. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  2. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  6. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  7. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  9. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

随机推荐

  1. MySQL做为手动开启事务用法

    START TRANSACTION;INSERT INTO `t1` (t, t1) VALUES('124', NOW());ROLLBACK;COMMIT;

  2. Yii 中Criteria常用方法

    $criteria = new CDbCriteria; //select $criteria->select = '*';//默认* $criteria->select = 'id,na ...

  3. Entity Framework应用:使用Code First模式管理视图

    一.什么是视图 视图在RDBMS(关系型数据库管理系统)中扮演了一个重要的角色,它是将多个表的数据联结成一种看起来像是一张表的结构,但是没有提供持久化.因此,可以将视图看成是一个原生表数据顶层的一个抽 ...

  4. select文本框架(change事件)改变另外一个select的值

    $('select[name=adults]').bind('change', function() { var $value = $(this).val(); if ($value >= 1) ...

  5. 'cl.exe' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

    1.首先找到vcvars32.bat文件,一般在C:\\Program Files (x86)\\Microsoft Visual Studio 12.0\\VC\\bin文件夹下 2.打开cmd黑窗 ...

  6. qt 窗口控件自动调整大小

    /******************************************************************** * qt 窗口控件自动调整大小 * * 在写gui的时候,希 ...

  7. BCM_SDK命令

    启动bcm的sdk,会进入一个类似shell的交互界面,在其中如入命令,可以配置交换机芯片.本文主要记录一下命令: 1.端口限速命令 2.链路聚合命令 3.i2c控制命令 启动方法: /tmp/bcm ...

  8. Spring 4 官方文档学习(七)核心技术之Spring AOP APIs

    请忽略本篇内容!!! 1.介绍 2.Spring中的pointcut API 2.1.概念 2.2.对pointcut的操作 2.3. AspectJ expression pointcut 2.4. ...

  9. vector、map删除当前记录

    map<string, string> sMap; map<string, string>::iterator iter; for(iter = sMap.begin();it ...

  10. e682. 获得打印页的尺寸

    Note that (0, 0) of the Graphics object is at the top-left of the actual page, which is outside the ...