【BZOJ3003】LED BFS+状压DP
【BZOJ3003】LED
Description
Input
Output
Sample Input
10 8 2
1 2 3 5 6 7 8 9
3 5
3 2 1
1 2
3
Sample Output
-1
【数据规模】
对于100%的数据,T≤10,N≤10000,K≤10,L≤100,1≤A_i≤N。
题解:一开始想网络流想了半天。。。结果是错的。
第一步很常用也很关键,我们将原序列差分,然后就变成了只有2k个关键点需要染黑,而每个操作可以看成是将两个距离为L的格子同时反色。这个过程比较类似于一个最短路的过程,我们将一个关键点染色,此时出现了一个多余的点,我们再将多余点不断反色直到走到了另一个关键点,此时我们可以看做这两个关键点成功配对,而代价就是从这个点走到另一个点的最短路。所以我们先预处理出任意两个关键点之间的最短路,然后DP。
设f[S]表示已经配对的点的状态为S的最小代价。转移时,我只需要们枚举S中最后那个点和谁配对即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int n,m,K,L;
bool vis[10010];
int op[30],w[30],v[110],dis[10010],f[30][30],g[1<<20],Log[1<<20];
queue<int> q;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
inline void work()
{
n=rd(),K=rd(),L=rd(),m=0;
memset(f,0x3f,sizeof(f)),memset(g,0x3f,sizeof(g));
int i,j,a,u;
for(i=1;i<=K;i++)
{
op[i]=rd();
for(j=1;j<i;j++) if(op[j]==op[i]) break;
if(j==i) vis[op[i]]^=1,vis[op[i]+1]^=1;
}
for(i=1;i<=n+1;i++) if(vis[i]) w[m++]=i,vis[i]=0;
for(i=1;i<=L;i++) v[i]=rd();
sort(w,w+m);
for(i=0;i<m;i++) Log[1<<i]=i;
for(i=0;i<m;i++)
{
memset(dis,0x3f,sizeof(dis));
q.push(w[i]),dis[w[i]]=0;
while(!q.empty())
{
u=q.front(),q.pop();
for(j=1;j<=L;j++)
{
if(u+v[j]<=n+1&&dis[u+v[j]]==0x3f3f3f3f) dis[u+v[j]]=dis[u]+1,q.push(u+v[j]);
if(u-v[j]>=1&&dis[u-v[j]]==0x3f3f3f3f) dis[u-v[j]]=dis[u]+1,q.push(u-v[j]);
}
}
for(j=0;j<m;j++) if(i!=j) f[i][j]=dis[w[j]];
}
g[0]=0;
for(i=1;i<(1<<m);i++)
{
a=Log[i&-i];
for(j=a+1;j<m;j++) if((i>>j)&1) g[i]=min(g[i],g[i^(1<<j)^(1<<a)]+f[j][a]);
}
printf("%d\n",(g[(1<<m)-1]==0x3f3f3f3f)?-1:g[(1<<m)-1]);
}
int main()
{
int T=rd();
while(T--) work();
return 0;
}//2 10 8 2 1 2 3 5 6 7 8 9 3 5 3 2 1 1 2 3
//1 10 3 2 1 1 10 10 8
【BZOJ3003】LED BFS+状压DP的更多相关文章
- #12【BZOJ3003】LED BFS+状压DP
题解: 看到区间修改先想一下差分 这题用差分是为了分析问题 现在的问题就变成了 原序列全为0,要使得特定的k个点变为1,每个操作改变x,y+1 然后我们会发现 对于二元组a,b我们要修改它,实际上是在 ...
- hdu 4856 Tunnels (bfs + 状压dp)
题目链接 The input contains mutiple testcases. Please process till EOF.For each testcase, the first line ...
- HDU-4856 Tunnels (BFS+状压DP)
Problem Description Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In hi ...
- 孤岛营救问题(BFS+状压DP)
孤岛营救问题 https://www.luogu.org/problemnew/show/P4011 用状压DP标记拿到钥匙的数量 #include<iostream> #include& ...
- QDUOJ 来自xjy的签到题(bfs+状压dp)
来自xjy的签到题 Description 爱丽丝冒险来到了红皇后一个n*n大小的花园,每个格子由'.'或'#'表示,'.'表示爱丽丝可以到达这个格子,‘#’表示爱丽丝不能到达这个格子,爱丽丝每1 ...
- HDU-3681-Prison Break(BFS+状压DP+二分)
Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...
- 【BZOJ 3049】【USACO2013 Jan】Island Travels BFS+状压DP
这是今天下午的互测题,只得了60多分 分析一下错因: $dis[i][j]$只记录了相邻的两个岛屿之间的距离,我一开始以为可以,后来$charge$提醒我有可能会出现来回走的情况,而状压转移就一次,无 ...
- CodeForces 907E Party(bfs+状压DP)
Arseny likes to organize parties and invite people to it. However, not only friends come to his part ...
- HDU 3247 Resource Archiver (AC自动机+BFS+状压DP)
题意:给定 n 个文本串,m个病毒串,文本串重叠部分可以合并,但合并后不能含有病毒串,问所有文本串合并后最短多长. 析:先把所有的文本串和病毒都插入到AC自动机上,不过标记不一样,可以给病毒标记-1, ...
随机推荐
- 《FPGA全程进阶---实战演练》第二章之PCB layout注意事项以及投板几点说明
上一篇博客讲述了各个部分的原理图,那么根据原理图画出PCB,其实PCB是一门很大的学问,想要掌握谈何容易.就笔者在画PCB时的一些注意事项做一些说明. 1.电源部分的电源线 ...
- j2se j2ee j2me
多数编程语言都有预选编译好的类库以支持各种特定的功能,在Java中,类库以包(package)的形式提供,不同版本的Java提供不同的包,以面向特定的应用. Java2平台包括标准版(J2SE).企业 ...
- 关于Cocos2d-x很多奇怪的报错
1.说什么找不到类和命名空间,但是已经包含头文件 项目-属性-配置属性-C/C++-附加包含目录-编辑-添加新行-写上$(EngineRoot) 2.很多语句报错,但是都没问题 我是这样理解的,书上的 ...
- Geometric deep learning on graphs and manifolds using mixture model CNNs
Monti, Federico, et al. "Geometric deep learning on graphs and manifolds using mixture model CN ...
- Spring 4 官方文档学习(十一)Web MVC 框架之Flash Attributes
接上一篇中的重定向. http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html#mvc-fl ...
- 配置 -- PHPstorm+Xdebug断点调试PHP
运行环境: PHPSTORM版本 : 8.0.1 PHP版本 : 5.6.2 xdebug版本:php_xdebug-2.2.5-5.6-vc11-x86_64.dll ps : php版本和xdeb ...
- QListView的子项的ViewMode
QListView.setViewMode(ViewMode mode) enum QListView::ViewMode Constant Value DescriptionQListV ...
- tomcat日志神器--kibana
最近公司搭了套kibana的日志系统,感受比原来查看日志方便多了.记得以前查看日志是通过ssh到服务器,查看系统日志用vi查看器查看或者下载到本地,用logview查看搜索,可读性很低.自从用了kib ...
- 【Java面试题】36 List、Map、Set三个接口,存取元素时,各有什么特点?
List与Set都是单列元素的集合,它们有一个功共同的父接口Collection. Set里面不允许有重复的元素, 存元素:add方法有一个boolean的返回值,当集合中没有某个元素,此时add方法 ...
- jQuery弹出遮罩层效果完整示例
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...