Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)
D. Appleman and Tree
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.
Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into(k + 1) parts. Note, that each part will be a tree with colored vertices.
Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).
The first line contains an integer n (2 ≤ n ≤ 105) — the number of tree vertices.
The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.
The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.
Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).
3
0 0
0 1 1
2
6
0 1 1 0 4
1 1 0 0 1 0
1
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
27
题意:对每个节点染色,白或者黑,问你断开某些边,使得每个联通块都恰好只有一个节点时黑色,问有多少种断边方式。
思路 :树形DP, dp[i][0]代表到 i 这个点它所在的子树只有一个黑点的情况,dp[i][0] 包含i节点的这部分没有黑点的情况数。
对于每个节点 i,计算到它的一个子树(根节点u) (设连接的边为edge)的时候,dp[i][0] 为dp[i][0] * dp[u][1] + dp[i][0] * dp[u][0], 已处理完的一定要取dp[i][0], 如果取edge 则子树取dp[u][0],如果不取edge, 则子树取dp[u][1].
dp[i][1] 为 dp[i][1] *(dp[u][0] + dp[u][1]) + dp[i][0] *dp[u][1] , 如果处理完的取dp[i][1],edge取的话为dp[u][0], 不取的话为dp[u][1]; 如果处理完的取dp[i][0], edge一定要取且要乘以dp[u][1] (ps: dp[u][0] 不能要,如果要的话 u点的部分会出现不含黑点的情况)
#include <stdio.h>
#include <string.h>
#include <iostream>
#define mod 1000000007 using namespace std ; struct node
{
int u ;
int v ;
int next ;
}p[];
int cnt,head[],color[] ;
long long dp[][] ; void addedge(int u,int v)
{
p[cnt].u = u ;
p[cnt].v = v ;
p[cnt].next = head[u] ;
head[u] = cnt ++ ;
}
void DFS(int u)
{
dp[u][color[u]] = ;
for(int i = head[u] ; i+ ; i = p[i].next)
{
int v = p[i].v ;
DFS(v) ;
dp[u][] = ((dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod) % mod ;
dp[u][] = ((dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod) % mod ;
}
}
int main()
{
int n ,a;
while(~scanf("%d",&n))
{
cnt = ;
memset(head,-,sizeof(head)) ;
memset(dp,,sizeof(dp)) ;
for(int i = ; i < n ; i++)
{
scanf("%d",&a) ;
addedge(a,i) ;
}
for(int i = ; i < n ; i++)
scanf("%d",&color[i]) ;
DFS() ;
printf("%I64d\n",dp[][]) ;
}
return ;
}
Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)的更多相关文章
- Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】
题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...
- 贪心 Codeforces Round #263 (Div. 2) C. Appleman and Toastman
题目传送门 /* 贪心:每次把一个丢掉,选择最小的.累加求和,重复n-1次 */ /************************************************ Author :R ...
- Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新
C. Appleman and a Sheet of Paper Appleman has a very big sheet of paper. This sheet has a form of ...
- Codeforces Round #263 (Div. 2) A. Appleman and Easy Task【地图型搜索/判断一个点四周‘o’的个数的奇偶】
A. Appleman and Easy Task time limit per test 1 second memory limit per test 256 megabytes input sta ...
- Codeforces Round #196 (Div. 2) D. Book of Evil 树形dp
题目链接: http://codeforces.com/problemset/problem/337/D D. Book of Evil time limit per test2 secondsmem ...
- Codeforces Round #382 (Div. 2) 继续python作死 含树形DP
A - Ostap and Grasshopper zz题能不能跳到 每次只能跳K步 不能跳到# 问能不能T-G 随便跳跳就可以了 第一次居然跳越界0.0 傻子哦 WA1 n,k = map ...
- Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP
C. Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some g ...
- Codeforces Round #267 (Div. 2) C. George and Job(DP)补题
Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...
- Codeforces Round #263 (Div. 2)
吐槽:一辈子要在DIV 2混了. A,B,C都是简单题,看AC人数就知道了. A:如果我们定义数组为N*N的话就不用考虑边界了 #include<iostream> #include &l ...
随机推荐
- 2015 年开源前端框架盘点 TOP 20
1.名称:Bootstrap 类别/语言:HTML.CSS.JavaScript 创建者: Twitter 人气:在Github上有91007 stars 描述:主流框架中毋庸置疑的老大,Bootst ...
- String.split()方法你可能不知道的一面
一.问题 java中String的split()是我们经常使用的方法,用来按照特定字符分割字符串,那么我们看以下一段代码: public void splitTest() { String str = ...
- IOS之表视图添加搜索栏
下面是我们要实现的效果.本效果是在上一篇自定义表视图的基础上进行更改的. 1.将Search bar and search display拖动到ViewController中.不要添加Sear ...
- php xml转为xml或者json
<?php class XmlToArray { private $xml; private $contentAsName="content" ; private $attr ...
- ASP.NET MVC掉过的坑_MVC初识及MVC应用程序结构
APS.Net MVC 浅谈[转] 来自MSDN 点击访问 MVC 理论结构 模型-视图-控制器 (MVC) 体系结构模式将应用程序分成三个主要组件:模型.视图和控制器. ASP.NET MVC 框架 ...
- 微信扫码支付asp.net(C#)实现步骤
支付提交页面: [HttpPost] public ActionResult index(decimal amount) { //生成订单10位序列号,此处用时间和随机数生成,商户根据自己调整,保证唯 ...
- 20145103《java程序设计》第五周学习总结
20145103<Java程序设计>第5周学习总结 教材学习内容总结 第八章 异常处理 1.设计错误对象都继承自java.lang.Throwable类 2.Java中所有错误都会被打包为 ...
- VS(C++)编程遇到的错误集合
编译错误 1.error C1010: 原因:没有在文件开头添加include "stdafx.h". 2.error C2440: "=": 无法从" ...
- WEB相关文件的加载顺序
一. 1.启动一个WEB项目,WEB容器会先去读取它的配置文件web.xml,读取<context-param>和<listener>两个节点. 2.接着,容器创建一个Serv ...
- web项目自动化测试方案预研
一. 网上方案整理 Watir.Watir-Webdriver.Selenium2.QTP区别 Waitr与Watir-WebDriver有什么区别? Watir是非常优秀的一款自动化测试工具.其使 ...