题目链接

D. Appleman and Tree

time limit per test :2 seconds
memory limit per test: 256 megabytes
input :standard input
output:standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into(k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Sample test(s)
input
3
0 0
0 1 1
output
2
input
6
0 1 1 0 4
1 1 0 0 1 0
output
1
input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
output
27

题意:对每个节点染色,白或者黑,问你断开某些边,使得每个联通块都恰好只有一个节点时黑色,问有多少种断边方式。

思路 :树形DP,  dp[i][0]代表到 i 这个点它所在的子树只有一个黑点的情况,dp[i][0] 包含i节点的这部分没有黑点的情况数。

对于每个节点 i,计算到它的一个子树(根节点u) (设连接的边为edge)的时候,dp[i][0] 为dp[i][0] * dp[u][1] + dp[i][0] * dp[u][0], 已处理完的一定要取dp[i][0], 如果取edge 则子树取dp[u][0],如果不取edge, 则子树取dp[u][1].

dp[i][1] 为 dp[i][1] *(dp[u][0] + dp[u][1]) + dp[i][0] *dp[u][1] , 如果处理完的取dp[i][1],edge取的话为dp[u][0], 不取的话为dp[u][1]; 如果处理完的取dp[i][0], edge一定要取且要乘以dp[u][1]  (ps: dp[u][0] 不能要,如果要的话 u点的部分会出现不含黑点的情况)

 #include <stdio.h>
#include <string.h>
#include <iostream>
#define mod 1000000007 using namespace std ; struct node
{
int u ;
int v ;
int next ;
}p[];
int cnt,head[],color[] ;
long long dp[][] ; void addedge(int u,int v)
{
p[cnt].u = u ;
p[cnt].v = v ;
p[cnt].next = head[u] ;
head[u] = cnt ++ ;
}
void DFS(int u)
{
dp[u][color[u]] = ;
for(int i = head[u] ; i+ ; i = p[i].next)
{
int v = p[i].v ;
DFS(v) ;
dp[u][] = ((dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod) % mod ;
dp[u][] = ((dp[u][] * dp[v][]) % mod + (dp[u][] * dp[v][]) % mod) % mod ;
}
}
int main()
{
int n ,a;
while(~scanf("%d",&n))
{
cnt = ;
memset(head,-,sizeof(head)) ;
memset(dp,,sizeof(dp)) ;
for(int i = ; i < n ; i++)
{
scanf("%d",&a) ;
addedge(a,i) ;
}
for(int i = ; i < n ; i++)
scanf("%d",&color[i]) ;
DFS() ;
printf("%I64d\n",dp[][]) ;
}
return ;
}

Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)的更多相关文章

  1. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  2. 贪心 Codeforces Round #263 (Div. 2) C. Appleman and Toastman

    题目传送门 /* 贪心:每次把一个丢掉,选择最小的.累加求和,重复n-1次 */ /************************************************ Author :R ...

  3. Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新

    C. Appleman and a Sheet of Paper   Appleman has a very big sheet of paper. This sheet has a form of ...

  4. Codeforces Round #263 (Div. 2) A. Appleman and Easy Task【地图型搜索/判断一个点四周‘o’的个数的奇偶】

    A. Appleman and Easy Task time limit per test 1 second memory limit per test 256 megabytes input sta ...

  5. Codeforces Round #196 (Div. 2) D. Book of Evil 树形dp

    题目链接: http://codeforces.com/problemset/problem/337/D D. Book of Evil time limit per test2 secondsmem ...

  6. Codeforces Round #382 (Div. 2) 继续python作死 含树形DP

    A - Ostap and Grasshopper zz题能不能跳到  每次只能跳K步 不能跳到# 问能不能T-G  随便跳跳就可以了  第一次居然跳越界0.0  傻子哦  WA1 n,k = map ...

  7. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  8. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

  9. Codeforces Round #263 (Div. 2)

    吐槽:一辈子要在DIV 2混了. A,B,C都是简单题,看AC人数就知道了. A:如果我们定义数组为N*N的话就不用考虑边界了 #include<iostream> #include &l ...

随机推荐

  1. android保存图片的方式

    Android中保存图片的两种方式 第一种是保存到数据库: 1.保存到数据库: 2.从数据库读取: 二是以图片格式保存到本地 1. A.声明tempFile以保存到指定路径: B.保存到tempFil ...

  2. poj 2153 Rank List

    原题链接:http://poj.org/problem?id=2153 简单题,map,平衡树均可.. map: #include<algorithm> #include<iostr ...

  3. go语言包与包引用

    go语言中包(package)与java中的包(package)非常类似,都是组织代码的方式,而且都和磁盘上的目录结构存在对应关系. go语言中,包名一般为go代码所在的目录名,但是与java不同的是 ...

  4. python数组的使用

    python数组的使用 2010-07-28 17:17 1.Python的数组分三种类型:(1) list 普通的链表,初始化后可以通过特定方法动态增加元素.定义方式:arr = [元素] (2) ...

  5. iOS耳机操作

    iOS在7之后增加的麦克风权限的申请,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 AVAudioSession *avSession = [AVAudioSession shar ...

  6. VS2010出现灾难性错误的解决办法

    VS2010出现灾难性错误的解决办法   之前本人利用VS2010 在编写一个基于对话框的程序的时候,要在对话框类C-.DLG中添加函数,右键点击类向导,此时界面上弹出一个消息框,告知出现灾难性事故, ...

  7. Liferay JSP中常用的标签

    (本文转载自http://www.cnblogs.com/edwardlauxh/archive/2010/03/26/1918614.html) 在Liferay框架中拥有它自身的标签,虽然Port ...

  8. 关于BaseAdapter的使用及优化心得(一)

    对于Android程序员来说,BaseAdapter肯定不会陌生,灵活而优雅是BaseAdapter最大的特点.开发者可以通过构造BaseAdapter并搭载到ListView或者GridView这类 ...

  9. Java多线程时内存模型

    1. 概述 多任务和高并发是衡量一台计算机处理器的能力重要指标之一.一般衡量一个服务器性能的高低好坏,使用每秒事务处理数(Transactions Per Second,TPS)这个指标比较能说明问题 ...

  10. Winform跨线程操作界面的策略

    BeginInvoke(new ThreadStart(() => toolStripButton1.Text = "aaa")); 1.非跨线程操作和部分跨线程get不会引 ...