题目链接:http://poj.org/problem?id=1830

题意:中文题面,求的是方案数。

首先可以知道, 如果方案数不止一个的话,说明矩阵行列式值为0,即存在自由变元,由于变量只有两种状态,那么方案数就是2^自由变元数。

从起始状态到终止状态,只需要关心起始和终止哪些状态不一样就行,也就是翻转奇数次。

由于是倒推,所以开关的影响要反过来存。

 #include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int maxn = ;
int equ, var;
int a[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num; int gauss() {
int max_r, col, k;
free_num = ;
for(k = , col = ; k < equ && col < var; k++, col++) {
max_r = k;
for(int i = k + ; i < equ; i++) {
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == ) {
k--;
free_x[free_num++] = col;
continue;
}
if(max_r != k) {
for(int j = col; j < var + ; j++)
swap(a[k][j], a[max_r][j]);
}
for(int i = k + ; i < equ; i++) {
if(a[i][col] != ) {
for(int j = col; j < var + ; j++) {
a[i][j] ^= a[k][j];
}
}
}
}
for(int i = k; i < equ; i++) {
if(a[i][col] != )
return -;
}
if(k < var) return var - k;
for(int i = var - ; i >= ; i--) {
x[i] = a[i][var];
for(int j = i + ; j < var; j++) {
x[i] ^= (a[i][j] & x[j]);
}
}
return ;
} int main() {
// freopen("in", "r", stdin);
int T, _ = ;
char wtf[] = "Oh,it's impossible~!!";
scanf("%d", &T);
while(T--) {
scanf("%d", &var);
equ = var;
memset(a, , sizeof(a));
memset(x, , sizeof(x));
memset(free_x, , sizeof(free_x));
for(int i = ; i < var; i++) {
scanf("%d", &a[i][var]);
a[i][i] = ;
}
int u, v;
for(int i = ; i < var; i++) {
scanf("%d", &u);
a[i][var] ^= u;
}
while(~scanf("%d%d",&u,&v) && u+v) {
a[v-][u-] = ;
}
int ret = gauss();
if(ret == -) puts(wtf);
else printf("%lld\n", (LL)((LL) << ret));
}
return ;
}

[POJ1830]开关问题(高斯消元,异或方程组)的更多相关文章

  1. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  2. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  3. UVA11542 Square(高斯消元 异或方程组)

    建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...

  4. Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】

    高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...

  5. UVa 11542 (高斯消元 异或方程组) Square

    书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...

  6. poj1830 开关问题[高斯消元]

    其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...

  7. UVA 11542 Square 高斯消元 异或方程组求解

    题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...

  8. poj1830(高斯消元解mod2方程组)

    题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...

  9. 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树

    [题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...

  10. POJ1830开关问题——gauss消元

    题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...

随机推荐

  1. SqlServer中使用Select语句给变量赋值的时候需要注意的一个问题

    我们知道在SqlServer中可以用Select语句给变量赋值,比如如下语句就为int类型的变量@id赋值 ; select @id=id from ( as id union all as id u ...

  2. android 项目学习随笔二十(屏幕适配)

    1.图片适配 放入相同名称的资源文件,机器根据不同分辨率找相近的资源 240*320 ldpi 320*480 mdpi 480*800 hdpi 720*1280 xhdpi 2.布局适配 在不同的 ...

  3. Tomcat部署问题

    一.无法部署,访问路径报404错误,在tomcat的页面的manager app中无法启动,提示:FAIL - Application   could not....: 重新更改web.xml之后就正 ...

  4. Mac OX 隐藏文件夹,文件,应用,磁盘的2种方法 hide finder folder, file, application, volume in 2 ways

    经常需要主目录下隐藏一些文件夹之类的, 第一想到的当然就是:在要隐藏的文件夹前面加『.』(leading dot),这个用法当然可以的了 用习惯了Linux/GNU系统的,基本习惯使用这种办法 但是, ...

  5. Linux Kernel中断子系统来龙去脉浅析【转】

    转自:http://blog.csdn.net/u011461299/article/details/9772215 版权声明:本文为博主原创文章,未经博主允许不得转载. 一般来说,在一个device ...

  6. ASP.NET MVC3 Dynamically added form fields model binding

    Adding  new Item to a list of items, inline is a very nice feature you can provide to your user. Thi ...

  7. 多拉A梦——日语歌词

    こんなこといいな できたらいいな 这件事真好啊 能够做到的话就好啦 あんな梦(ゆめ) こんな梦(ゆめ) いっぱいあるけど 那样的梦想 这样的梦想 我还有好多哪 みんなみんなみんな かなえてくれる 大家 ...

  8. java double类型保留两位小数4种方法【转】

    4种方法,都是四舍五入,例: import java.math.BigDecimal; import java.text.DecimalFormat; import java.text.NumberF ...

  9. 【转】Windows下搭建cvs服务器

    转载地址:http://hi.baidu.com/iloverobot/item/fad1eb6d66c45e166995e66d 下载cvs server:CVSNT 网址为:http://www. ...

  10. javascript事件处理解析

    一.什么是事件!(w3c解释) 事件是可以被 JavaScript 侦测到的行为. JavaScript 使我们有能力创建动态页面.事件是可以被 JavaScript 侦测到的行为. 网页中的每个元素 ...