深度学习框架Caffe —— Deep learning in Practice
因工作交接需要, 要将caffe使用方法及整体结构描述清楚。 鉴于也有同学问过我相关内容, 决定在本文中写个简单的tutorial, 方便大家参考。
本文简单的讲几个事情:
- Caffe能做什么?
- 为什么选择caffe?
- 环境
- 整体结构
- Protocol buffer
- 训练基本流程
- Python中训练
- Debug
Caffe能做什么?
- 定义网络结构
- 训练网络
- C++/CUDA 写的结构
- cmd/python/Matlab接口
- CPU/GPU工作模式
- 给了一些参考模型&pretrain了的weights
为什么选择caffe?
- 模块化做的好
- 简单:修改结构无需该代码
- 开源:共同维护开源代码
环境:
$ lsb_release -a
Distributor ID: Ubuntu
Description: Ubuntu 12.04.4 LTS
Release: 12.04
Codename: precise$ cat /proc/version
Linux version 3.2.0-29-generic (buildd@allspice) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) ) #46-Ubuntu SMP Fri Jul 27 17:03:23 UTC 2012Vim + Taglist + Cscope
整体结构:
定义CAFFE为caffe跟目录,caffe的核心代码都在$CAFFE/src/caffe 下,主要有以下部分:net, blob, layer, solver.
net.cpp:
net定义网络, 整个网络中含有很多layers, net.cpp负责计算整个网络在训练中的forward, backward过程, 即计算forward/backward 时各layer的gradient。layers:
在$CAFFE/src/caffe/layers中的层,在protobuffer (.proto文件中定义message类型,.prototxt或.binaryproto文件中定义message的值) 中调用时包含属性name, type(data/conv/pool…), connection structure (input blobs and output blobs),layer-specific parameters(如conv层的kernel大小)。定义一个layer需要定义其setup, forward 和backward过程。blob.cpp:
net中的数据和求导结果通过4维的blob传递。一个layer有很多blobs, e.g,- 对data,weight blob大小为Number * Channels * Height * Width, 如256*3*224*224;
- 对conv层,weight blob大小为 Output 节点数 * Input 节点数 * Height * Width,如AlexNet第一个conv层的blob大小为96 x 3 x 11 x 11;
- 对inner product 层, weight blob大小为 1 * 1 * Output节点数 * Input节点数; bias blob大小为1 * 1 * 1 * Output节点数( conv层和inner product层一样,也有weight和bias,所以在网络结构定义中我们会看到两个blobs_lr,第一个是weights的,第二个是bias的。类似地,weight_decay也有两个,一个是weight的,一个是bias的);
blob中,mutable_cpu/gpu_data() 和cpu/gpu_data()用来管理memory,cpu/gpu_diff()和 mutable_cpu/gpu_diff()用来计算求导结果。
slover.cpp:
结合loss,用gradient更新weights。主要函数:
Init(),
Solve(),
ComputeUpdateValue(),
Snapshot(), Restore(),//快照(拷贝)与恢复 网络state
Test();在solver.cpp中有3中solver,即3个类:AdaGradSolver, SGDSolver和NesterovSolver可供选择。
关于loss,可以同时有多个loss,可以加regularization(L1/L2);
Protocol buffer:
上面已经将过, protocol buffer在 .proto文件中定义message类型,.prototxt或.binaryproto文件中定义message的值;
Caffe
Caffe的所有message定义在$CAFFE/src/caffe/proto/caffe.proto中。Experiment
在实验中,主要用到两个protocol buffer: solver的和model的,分别定义solver参数(学习率啥的)和model结构(网络结构)。技巧:
- 冻结一层不参与训练:设置其blobs_lr=0
- 对于图像,读取数据尽量别用HDF5Layer(因为只能存float32和float64,不能用uint8, 所以太费空间)
训练基本流程:
- 数据处理
法一,转换成caffe接受的格式:lmdb, leveldb, hdf5 / .mat, list of images, etc.;法二,自己写数据读取层(如https://github.com/tnarihi/tnarihi-caffe-helper/blob/master/python/caffe_helper/layers/data_layers.py) - 定义网络结构
- 配置Solver参数
- 训练:如 caffe train -solver solver.prototxt -gpu 0
在python中训练:
Document & Examples: https://github.com/BVLC/caffe/pull/1733
核心code:
- $CAFFE/python/caffe/_caffe.cpp
定义Blob, Layer, Net, Solver类 - $CAFFE/python/caffe/pycaffe.py
Net类的增强功能
Debug:
- 在Make.config中设置DEBUG := 1
- 在solver.prototxt中设置debug_info: true
- 在python/Matlab中察看forward & backward一轮后weights的变化
经典文献:
[ DeCAF ] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.
[ R-CNN ] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.
[ Zeiler-Fergus Visualizing] M. Zeiler and R. Fergus. visualizing and understanding convolutional networks. ECCV, 2014.
[ LeNet ] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 1998.
[ AlexNet ] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.
[ OverFeat ] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2014.
[ Image-Style (Transfer learning) ] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller. Recognizing Image Style. BMVC, 2014.
[ Karpathy14 ] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. CVPR, 2014.
[ Sutskever13 ] I. Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, 2013.
[ Chopra05 ] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. CVPR, 2005.
from: http://blog.csdn.net/abcjennifer/article/details/46424949
深度学习框架Caffe —— Deep learning in Practice的更多相关文章
- 贝叶斯深度学习(bayesian deep learning)
本文简单介绍什么是贝叶斯深度学习(bayesian deep learning),贝叶斯深度学习如何用来预测,贝叶斯深度学习和深度学习有什么区别.对于贝叶斯深度学习如何训练,本文只能大致给个介绍. ...
- 深度学习概述教程--Deep Learning Overview
引言 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里, ...
- 深度学习框架Caffe的编译安装
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...
- 深度学习框架-caffe安装-环境[Mac OSX 10.12]
深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...
- 深度学习框架-caffe安装-Mac OSX 10.12
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...
- 深度学习加速器堆栈Deep Learning Accelerator Stack
深度学习加速器堆栈Deep Learning Accelerator Stack 通用张量加速器(VTA)是一种开放的.通用的.可定制的深度学习加速器,具有完整的基于TVM的编译器堆栈.设计了VTA来 ...
- 贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...
- 深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes
来自:CVPR 2014 作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predic ...
- 深度学习框架caffe/CNTK/Tensorflow/Theano/Torch的对比
在单GPU下,所有这些工具集都调用cuDNN,因此只要外层的计算或者内存分配差异不大其性能表现都差不多. Caffe: 1)主流工业级深度学习工具,具有出色的卷积神经网络实现.在计算机视觉领域Caff ...
随机推荐
- 解释型语言和编译型语言如何交互?以lua和c为例
转自http://my.oschina.net/mayqlzu/blog/113528 问题: 最近lua很火,因为<愤怒的小鸟>使用了lua,ios上有lua解释器?它是怎么嵌入大ios ...
- 【Integer To Roman】cpp
题目: Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from ...
- PHP中如何连接数据库基本语句
只是后端修改页面,不需要在前端显示的可以删除原有代码只输入<?php 开始编写语言即可,后面的?>也可以省略 //造一个连接$connect = @mysql_connect(" ...
- Linux进程栈和线程栈
参考资料: http://blog.csdn.net/xhhjin/article/details/7579145 总结: 1.进程的栈大小是在进程执行的时刻才能指定的,即不是在编译的时候决定 ...
- bzoj 3171 费用流
每个格拆成两个点,出点连能到的点的入点,如果是箭头指向 方向费用就是0,要不就是1,源点连所有出点,所有入点连 汇点,然后费用流 /********************************** ...
- Hibernate exercise 54
针对马士兵的Hibernate讲解第54讲的练习: 1) 学生.课程.分数的设计,并用Hibernate操作 在实际中,一般是先手动写SQL(可以优化)去创建表和关系,再设置Hibernate配置为u ...
- maven 构建spring ssh mybatis 配置
详情参与 http://blog.csdn.net/yuguiyang1990/article/details/8811817 前面我们使用Maven构建了Struts2项目,这里我们来试一下Hibe ...
- Appstore提交 被拒绝
Reasons 16.1: Apps that present excessively objectionable or crude content will be rejected 16.1 We ...
- c++中的原子操作
1. c/c++标准中没有定义任何操作符为原子的,操作符是否原子和平台及编译器版本有关 2. GCC提供了一组内建的原子操作,这些操作是以函数的形式提供的,这些函数不需要引用任何头文件 2.1 对变量 ...
- Windows Server
1. Windows Server 在试用license过期后会出现2小时一次的关机.如果暂时无法注册或者激活,下面的方法可以试试 taskkill /f /im wlms.exe ping -n 1 ...