数据结构B树
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树
的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构
(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
但B树在经过多次插入与删除后,有可能导致不同的结构:
右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的
树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就
是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树
结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的
策略;
B-树
是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的
子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果
命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为
空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少
利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占
M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B+树
B+树是B-树的变体,也是一种多路搜索树:
1.其定义基本与B-树同,除了:
2.非叶子结点的子树指针与关键字个数相同;
3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
(B-树是开区间);
5.为所有叶子结点增加一个链指针;
6.所有关键字都在叶子结点出现;
如:(M=3)
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在
非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好
是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储
(关键字)数据的数据层;
4.更适合文件索引系统;
B*树
是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3
(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据
复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分
数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字
(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之
间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
小结
B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于
走右结点;
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键
字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点
中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率
从1/2提高到2/3;
数据结构B树的更多相关文章
- python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)
python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...
- 学习javascript数据结构(四)——树
前言 总括: 本文讲解了数据结构中的[树]的概念,尽可能通俗易懂的解释树这种数据结构的概念,使用javascript实现了树,如有纰漏,欢迎批评指正. 原文博客地址:学习javascript数据结构( ...
- [翻译]Linux 内核里的数据结构 —— 基数树
目录 Linux 内核里的数据结构 -- 基数树 基数树 Radix tree Linux内核基数树API 链接 Linux 内核里的数据结构 -- 基数树 基数树 Radix tree 正如你所知道 ...
- 算法手记 之 数据结构(线段树详解)(POJ 3468)
依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不 ...
- Java数据结构之树和二叉树(2)
从这里始将要继续进行Java数据结构的相关讲解,Are you ready?Let's go~~ Java中的数据结构模型可以分为一下几部分: 1.线性结构 2.树形结构 3.图形或者网状结构 接下来 ...
- Java数据结构之树和二叉树
从这里开始将要进行Java数据结构的相关讲解,Are you ready?Let's go~~ Java中的数据结构模型可以分为一下几部分: 1.线性结构 2.树形结构 3.图形或者网状结构 接下来的 ...
- [数据结构]字典树(Tire树)
概述: Trie是个简单但实用的数据结构,是一种树形结构,是一种哈希树的变种,相邻节点间的边代表一个字符,这样树的每条分支代表一则子串,而树的叶节点则代表完整的字符串.和普通树不同的地方是,相同的字符 ...
- 数据结构(主席树):COGS 2211. 谈笑风生
2211. 谈笑风生 ★★★★ 输入文件:laugh.in 输出文件:laugh.out 简单对比时间限制:3 s 内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...
- 数据结构-B树
1.前言: 动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树(Red-Black Tree ) ...
- 数据结构之树(Tree)(一) :树
ps:好久没用动手写blog了,要在这条路上不断发展,就需要不停的学习,不停的思考与总结,当把写blog作为一种习惯,就是自我成长的证明,Fighting!. 一.简介 树是一种重要的非线性数据结构, ...
随机推荐
- Linux中变量#,#,@,0,0,1,2,2,*,$$,$?的含义【转】
转自:http://www.cnblogs.com/kaituorensheng/p/4002697.html 1 2 3 4 5 6 7 8 $# 是传给脚本的参数个数 $0 是脚本本身的名字 $1 ...
- Multi-source Replication
MariaDB starting with 10.0.1 Multi-source replication means that one server has many masters from wh ...
- Hibernate,JPA注解@DynamicInsert和@DynamicUpdate,Hibernate如何插入sysdate
@DynamicInsert属性:设置为true,设置为true,表示insert对象的时候,生成动态的insert语句,如果这个字段的值是null就不会加入到insert语句当中.默认false. ...
- C#:关联程序和文件
一.关联代码 /// <summary> /// 关联程序和类型 /// </summary> private void RegFileExt() { try { string ...
- 超文本标记语言(HTML)
超文本标记语言(HyperText MarkUp Language,HTML) HTML是用来制作网页的标记语言,HTML不需要编译,直接由浏览器解析: HTML文件是一个文本文件,包含了一些HTML ...
- [ios][opengles]OpenGL ES基础知识简介
参考: http://www.cnblogs.com/shangdahao/archive/2011/11/05/2233587.html 3D变换:模型,视图,投影与Viewport: http:/ ...
- 手把手教你用C++ 写ACM自动刷题神器(冲入HDU首页)
转载注明原地址:http://blog.csdn.net/nk_test/article/details/49497017 少年,作为苦练ACM,通宵刷题的你 是不是想着有一天能够荣登各大OJ榜首,俯 ...
- C#之参数线程
public Form1() { InitializeComponent(); } Thread t; private void button1_Click(object sender, EventA ...
- 20150604_Andriod 窗体PopupWindow动画
参考地址: http://www.open-open.com/lib/view/open1378720752084.html http://www.jcodecraeer.com/a/anzhuoka ...
- Uva 1347,旅行
题目链接:https://uva.onlinejudge.org/external/13/1347.pdf 这个题和uva 1658题目很像,只是加了一点,就是每个点都要走,刚开始,我以为可以直接拆点 ...