Cow Exhibition_背包(负数情况)
Description
fun..."
- Cows with Guns by Dana Lyons
The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.
Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.
Input
* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.
Output
Sample Input
5
-5 7
8 -6
6 -3
2 1
-8 -5
Sample Output
8
Hint
Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF
= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value
of TS+TF to 10, but the new value of TF would be negative, so it is not
allowed.
【题意】给出n头牛,分别给出它们的si,fi;取出几头使得si和fi的和最大,并且si之和与fi之和不能为负数;
【思路】背包题,就是存在负数的情况,可以把负数存入下标,数组开大点。用dp[i]存放每个s[i]能得到的最大的f,根据dp的有无,选出最大的dp
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
const int inf=<<;
int dp[N];
int s[],f[];
void init()
{
for(int i=;i<=;i++)
dp[i]=-inf;
dp[]=;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
init();
for(int i=;i<=n;i++)
{
scanf("%d%d",&s[i],&f[i]);
}
for(int i=;i<=n;i++)
{
if(s[i]<&&f[i]<) continue;//两个都为负,没有必要进行下去
if(s[i]>)//si为正,进行从大到小的背包
{
for(int j=;j>=s[i];j--)
{
if(dp[j-s[i]]>-inf)
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
}
else//为负数则从小到大背包
{
for(int j=s[i];j<=+s[i];j++)
{
if(dp[j-s[i]]>-inf)
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
} }
int ans=-inf;
for(int i=;i<=;i++)
//dp[]的范围是100000~200000;i就是s[i],如果此时dp[i]也就是f[i]大于等于0的话,
//再加上s[i]-100000(界限)就是答案
{
if(dp[i]>=) ans=max(ans,dp[i]+i-); }
printf("%d\n",ans);
} return ;
}
Cow Exhibition_背包(负数情况)的更多相关文章
- POJ 2184 Cow Exhibition【01背包+负数(经典)】
POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...
- POJ-2184 Cow Exhibition---01背包变形(负数偏移)
题目链接: https://vjudge.net/problem/POJ-2184 题目大意: 给出num(num<=100)头奶牛的S和F值(-1000<=S,F<=1000),要 ...
- POJ 2184 01背包+负数处理
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10200 Accepted: 3977 D ...
- POJ2184 Cow Exhibition 背包
题目大意:已知c[i]...c[n]及f[i]...f[n],现要选出一些i,使得当sum{c[i]}和sum{f[i]}均非负时,sum(c[i]+f[i])的最大值. 以sum(c[i])(c[i ...
- LG5196 「USACO2019JAN」Cow Poetry 背包+乘法原理
\(\mathrm{Cow Poetry}\) 问题描述 LG5196 题解 因为每句诗的长度一定是\(k\),所以自然而然想到背包. 设\(opt[i][j]\)代表到第\(i\)位时,结尾为\(j ...
- poj 1837 01背包
Balance Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java clas ...
- 背包dp相关
0/1背包 给出n个物品,每个物品有Vi的价值和Wi的费用,我们总共有m块钱,求最多能得到多少价值的物品. N<=10^3,m<=10^3 记录方案数?记录输出方案? 输出方案: 对每个d ...
- Margaritas on the River Walk_背包
Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...
- java判断字符串是否为数字,包括负数
/** * 判断是否为数字,包含负数情况 * @param str * @return */ private boolean isNumeric(String str){ Boolean flag = ...
随机推荐
- Reverse Linked List II [LeetCode]
Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1-> ...
- css3 keyframes animation
html,body,div,span,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,address,big,cite,code,del,em,font,img ...
- 421. Maximum XOR of Two Numbers in an Array——本质:利用trie数据结构查找
Given a non-empty array of numbers, a0, a1, a2, - , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- 解决tomcat部署多个虚拟机时报IllegalStateException: Web app root system property already set to 的问题
解决tomcat部署多个虚拟机时报IllegalStateException: Web app root system property already set to 的问题 在web.xml中添加如 ...
- tortoisegit教程
tortoisegit教程: http://www.mamicode.com/info-detail-311565.html https://my.oschina.net/longxuu/blog/1 ...
- java之io之File类的list()方法过滤目录的使用
java的io的知识中,File类必须掌握.File类是对文件或者文件夹的封装.它本身并不能对所封装的文件进行读写,它封装的只是文件或文件夹的周边知识,比如 大小啦,创建日期啦,路径啦等等. 如果Fi ...
- Codeforces 417E
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> #inclu ...
- Andriod——区别DVM与JVM
区别DVM与JVM 1.首要差别 Dalvik: 基于寄存器,编译和运行都会更快些 JVM: 基于栈, 编译和运行都会慢些 2.字节码的区别 Dalvik: 执行.dex格式的字节码,是对.class ...
- 一模 (6) day2
第一题: 题目大意:求最长公共上升子序列(LICS): 解题过程: 1.一开始想到模仿求最长公共子序列的方法,F[i][j]表示A串前i个,B串前j个的最长公共子序列,很明显当A[i]!= B[j]时 ...
- 用PHP的socket实现客户端到服务端的通信
服务端 <?php error_reporting(E_ALL); set_time_limit(0); ob_implicit_flush(); //本地IP $address = 'loca ...