manacher算法(转载)
原网址:http://blog.sina.com.cn/s/blog_70811e1a01014esn.html
manacher算法是我在网上无意中找到的,主要是用来求某个字符串的最长回文子串.
不过网上的版本还不太成熟,我就修改了下.
不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复杂度为O(n).
求最长回文子串这个问题,我听说有个分治+拓展kmp的算法,不过我估计后缀数组也可以.
但杀鸡岂能用牛刀?
现在进入正题:
首先,在字符串s中,用rad[i]表示第i个字符的回文半径,即rad[i]尽可能大,且满足:
s[i-rad[i],i-1]=s[i+1,i+rad[i]]
很明显,求出了所有的rad,就求出了所有的长度为奇数的回文子串.
至于偶数的怎么求,最后再讲.
假设现在求出了rad[1..i-1],现在要求后面的rad值,并且通过前面的操作,得知了当前字符i的rad值至少为j.现在通过试图扩大j来扫描,求出了rad[i].再假设现在有个指针k,从1循环到rad[i],试图通过某些手段来求出[i+1,i+rad[i]]的rad值.
根据定义,黑色的部分是一个回文子串,两段红色的区间全等.
因为之前已经求出了rad[i-k],所以直接用它.有3种情况:
①rad[i]-k<rad[i-k]
如图,rad[i-k]的范围为青色.因为黑色的部分是回文的,且青色的部分超过了黑色的部分,所以rad[i+k]肯定至少为rad[i]-k,即橙色的部分.那橙色以外的部分就不是了吗?这是肯定的.因为如果橙色以外的部分也是回文的,那么根据青色和红色部分的关系,可以证明黑色部分再往外延伸一点也是一个回文子串,这肯定不可能,因此rad[i+k]=rad[i]-k.为了方便下文,这里的rad[i+k]=rad[i]-k=min(rad[i]-k,rad[i-k]).
②rad[i]-k>rad[i-k]
如图,rad[i-k]的范围为青色.因为黑色的部分是回文的,且青色的部分在黑色的部分里面,根据定义,很容易得出:rad[i+k]=rad[i-k].为了方便下文,这里的rad[i+k]=rad[i-k]=min(rad[i]-k,rad[i-k]).
根据上面两种情况,可以得出结论:当rad[i]-k!=rad[i-k]的时候,rad[i+k]=min(rad[i]-k,rad[i-k]).
注意:当rad[i]-k==rad[i-k]的时候,就不同了,这是第三种情况:
如图,通过和第一种情况对比之后会发现,因为青色的部分没有超出黑色的部分,所以即使橙色的部分全等,也无法像第一种情况一样引出矛盾,因此橙色的部分是有可能全等的,但是,根据已知的信息,我们不知道橙色的部分是多长,因此就把i指针移到i+k的位置,j=rad[i-k](因为它的rad值至少为rad[i-k]),等下次循环的时候再做了.
整个算法就这样.
至于时间复杂度为什么是O(n),我已经证明了,但很难说清楚.所以自己体会吧.
上文还留有一个问题,就是这样只能算出奇数长度的回文子串,偶数的就不行.怎么办呢?有一种直接但比较笨的方法,就是做两遍(因为两个程序是差不多的,只是rad值的意义和一些下标变了而已).但是写两个差不多的程序是很痛苦的,而且容易错.所以一种比较好的方法就是在原来的串中每两个字符之间加入一个特殊字符,再做.如:aabbaca,把它变成a#a#b#b#a#c#a,这样的话,无论原来的回文子串长度是偶数还是奇数,现在都变成奇数了.
程序:
fin>>ST;
for (int i=0,End=ST.size(); i!=End; i++)
{
s[(i<<1)+1]=ST[i];
s[(i<<1)+2]='#';
}
s[0]='?';
s[ST.size()<<1]='*';//注意头,尾和中间插入的字符不同
//前面是初始化
for (int i=1,j=0,k,End=ST.size()<<1; i<End; )
{
while (s[i-j-1]==s[i+j+1]) j++; //扫描得出rad值
rad[i]=j;
for (k=1; k<=j && rad[i-k]!=rad[i]-k; k++) rad[i+k]=min(rad[i-k],rad[i]-k); //k指针扫描
i+=k; //i跳到下一个需要计算rad值的位置
j=max(j-k,0); //更新下一个rad值的初始值
}
manacher算法(转载)的更多相关文章
- 【转载】Manacher算法
本文原创:http://www.cnblogs.com/BigBallon/p/3816890.html只为了记录学习,不为抄袭!http://www.felix021.com/blog/read.p ...
- POJ3974 Palindrome (manacher算法)
题目大意就是说在给定的字符串里找出一个长度最大的回文子串. 才开始接触到manacher,不过这个算法的确很强大,这里转载了一篇有关manacher算法的讲解,可以去看看:地址 神器: #includ ...
- [转] Manacher算法详解
转载自: http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串 ...
- 第5题 查找字符串中的最长回文字符串---Manacher算法
转载:https://www.felix021.com/blog/read.php?2040 首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一 ...
- Manacher算法:求解最长回文字符串,时间复杂度为O(N)
原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...
- Manacher算法(马拉车算法)浅谈
什么是Manacher算法? 转载自百度百科 Manachar算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍 ...
- Manacher算法--O(n)回文子串算法
转自:http://blog.csdn.net/ggggiqnypgjg/article/details/6645824 O(n)回文子串算法 注:转载的这篇文章,我发现下面那个源代码有点bug... ...
- Hash 算法与 Manacher 算法
目录 前言 简单介绍 简述 Hash 冲突 离散化 基本结构 普通 Hash 简述 例题 字符串 Hash 简单介绍 核心思想 基本运算 二维字符串 Hash 例题 兔子与兔子 回文子串的最大长度 后 ...
- HDU3068 回文串 Manacher算法
好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...
随机推荐
- 使用C++读写Excel
1.导入Excel类型库 使用Visual C++的扩展指令#import导入Excel类型库: 1 2 3 4 5 6 7 8 9 10 11 12 #import "C:\\Progra ...
- 编译busybox错误
为了制作一个文件系统,首先要用busybox编译出文件系统所需要的应用程序.在下载了busybox-1.13.0.tar.bz2后,编译出现如下错误: In file included from /o ...
- codeigniter框架扩展核心类---实现前台后台视图的分离
1. 扩展核心类,主要作用就是扩展系统现在的功能. 为前台增加独立的视图文件夹: a. 自定义路径常量 :在application ->config/ constants.php中增加 /*m ...
- Scala List
1 介绍 Scala中列表List类似于数组,List所有元素都具有相同的类型,但有两个重要的区别. 首先,列表是不可变的,这意味着一个列表的元素可以不被分配来改变. 第二,列表表示一个链表,而数组平 ...
- android studio修改新项目package名称
android项目生成APK发布必须保证package唯一.新项目在已有项目基础上修改就必须修改package名称. 操作如下: 1) 在模块(module)上右键选择Refactor->Ren ...
- java 调用 .net webservice
1.首先下载Axis2工具包 2.解压之后用cmd命令进入bin目录WSDL2Java.bat -uri http://192.168.20.42:9999/LoginService.asmx?wsd ...
- Linux makefile教程之使用变量五[转]
使用变量 ———— 在 Makefile中的定义的变量,就像是C/C++语言中的宏一样,他代表了一个文本字串,在Makefile中执行的时候其会自动原模原样地展开在所使 用的地方.其与C/C++所不同 ...
- python开发中常见的小坑
(1)可变参数类型作为函数参数默认值,函数参数默认值的设置在Python中只会被执行一次,也就是定义该函数的时候. 解决办法,设置为None,然后判断 (2)Python中的变量名解析遵循所谓的LEG ...
- 网页元素定位神器之Xpath详解
摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ... ...
- <转>安卓软件测试的几个要点
1.界面 ① 文字错误.图片不显示或显示不正确.缺少输入项.按钮的大小和点击效果 ② 布局.图片和配色设计问题,测试人员很难进入 ③ 提示信息,提示信息语言准确简洁,有指导性.在应该提示的位置放入提示 ...