UVA 11990 ``Dynamic'' Inversion (序列分治)
26天以前做过的一道题,之前的做法是分治预处理,树套树在线修改,复杂度为O(nlogn+m*logn*logn),代码量较大。
本来想学习一下cdq分治的,看到论文上的凸包、斜率就暂时放一边了,只知道和一般的分治的不同是左子问题可以用来解决右边的子问题。
今天下午YY了一个离线的分治做法,也不知道叫不叫cdq。
Analysis:
对于每一个数字,构成逆序对除了val大小还和被删除的时间del有关,这实际上是一个三维偏序的问题。
一个元素是一个三元组e(pos,val,del),e1和e2对答案有贡献当且仅当e1.pos < e1.pos && e1.val > e2.val && e1.del > e2.del。
第一维pos已经给好了,第二个维度就用归并,而第三个维度就用树状数组(BIT)。用BIT的想法来源于,BIT插入的顺序对应着之前都
已经满足的序,在这里就是已经满足e1.pos < e1.pos && e1.val > e2.val ,然后用del查询作为下标就可以查询到满足第三个条件e1.del > e2.del的元素个数。
Note:
思想如此,实现上有还值得注意的地方,一是BIT插入的值域范围不能太大,所以我记录了两个关于时间的信息tKth[],tRank[],
tKth[i]表示当前区间第i大的del,tRank[del]表示del在当前区间的名次,(名次从1开始,0表示没有删去),可以很方便地用归并去维护。
二是BIT只能查询小的,需要转化。总对数是容易得到的,用总对数去减就好了。
BIT需要事先知道值域范围,这题只有删除,如果带有修改则应该改成平衡树。
复杂度
依然是O(nlogn+m*logn*logn),但常数很小,代码量也比较小。
#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int maxn = 2e5+, maxm = 1e5+;
ll ans;
int iv_pir[maxn], a[maxn], tRank[maxn], tKth[maxn];
int del[maxn], temp[maxn];
int C[][maxn];
int qry[maxm]; #define lb(x) (x&-x)
void add(int C[],int x,int d,int range)
{
//if(x<1) return;
while(x <= range){
C[x] += d; x += lb(x);
}
} int sum(int C[],int x)
{
int re = ;
while(x>){
re += C[x]; x -= lb(x);
}
return re;
} void divide(int l,int r)
{
if(l == r) {
if(del[a[l]]) {
tKth[l] = del[a[l]];
}
return;
}
int mid = (l+r)>>;
divide(l, mid);
divide(mid+, r);
//conquer int p = l, q = mid+, k = ;
while(p <= mid && !tKth[p]) { temp[k++] = ; p++; }
while(q <= r && !tKth[q]) { temp[k++] = ; q++; }
int base = l+k-;
while(p<=mid || q<=r){
if(p>mid || (q<=r && tKth[p] > tKth[q])) {
temp[k++] = tKth[q++];
}else {
temp[k++] = tKth[p++];
}
}
memcpy(tKth+l,temp,sizeof(int)*k);
for(int i = base+; i <= r; i++){
tRank[tKth[i]] = i-base;
}
int sz = r-base;
memset(C[]+,,sizeof(int)*(sz));
memset(C[]+,,sizeof(int)*(sz));
for(int i = l; i <= mid; i++) {
if(del[a[i]])
add(C[],tRank[del[a[i]]],,sz);
} p = l, q = mid+, k = ;
while(p<=mid || q<=r){
if(p>mid || (q<=r && a[p] > a[q])) {
ans += mid-p+;
if(del[a[q]]){
iv_pir[a[q]] += mid-p+ - sum(C[], tRank[del[a[q]]]);
add(C[], tRank[del[a[q]]], , sz);
}
temp[k++] = a[q++];
}else {
if(del[a[p]]){
iv_pir[a[p]] += q-mid- - sum(C[], tRank[del[a[p]]]);
add(C[], tRank[del[a[p]]], -, sz);
}
temp[k++] = a[p++];
}
}
memcpy(a+l, temp, sizeof(int)*k);
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int n, m; ;
while(~scanf("%d%d", &n, &m)){
for(int i = ; i < n; i++) scanf("%d", a+i);
memset(del+,,sizeof(int)*n);
for(int i = ; i <= m; i++) {
scanf("%d", qry+i);
del[qry[i]] = i;
iv_pir[qry[i]] = ;
}
ans = ;
divide(,n-);
for(int i = ; i <= m; i++){
printf("%lld\n", ans);
ans -= iv_pir[qry[i]];
}
}
return ;
}
UVA 11990 ``Dynamic'' Inversion (序列分治)的更多相关文章
- UVA 11990 `Dynamic'' Inversion CDQ分治, 归并排序, 树状数组, 尺取法, 三偏序统计 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA 11990 ``Dynamic'' Inversion 动态逆序对
``Dynamic'' Inversion Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://uva.onlinejudge.org/index ...
- UVA 11990 ``Dynamic'' Inversion (线段树套BIT,分治)
题目要求可转化为查询一个区间内有多少数比val大(或者小). 区间用线段树分解(logN),每个区间维护一rank树. rank可用BIT查询,往BIT里面插值,为了保证不同区间的BIT互不影响要先离 ...
- UVA 11990 ”Dynamic“ Inversion(线段树+树状数组)
[题目链接] UVA11990 [题目大意] 给出一个数列,每次删去一个数,求一个数删去之前整个数列的逆序对数. [题解] 一开始可以用树状数组统计出现的逆序对数量 对于每个删去的数,我们可以用线段树 ...
- [CF888E] Maximum Subsequence 序列分治
早期作品,不喜轻喷. LG传送门 序列分治板子题. 切这道题用了好长时间,所以想发篇题解作为纪念 . 首先,我们认真观察题目数据(面向数据做题是个好习惯),发现题目的\(n\)竟然只有\(35\),我 ...
- 算法复习——序列分治(ssoj光荣的梦想)
题目: 题目描述 Prince对他在这片大陆上维护的秩序感到满意,于是决定启程离开艾泽拉斯.在他动身之前,Prince决定赋予King_Bette最强大的能量以守护世界.保卫这里的平衡与和谐.在那个时 ...
- UVA - 1625 Color Length[序列DP 代价计算技巧]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- Uva 3767 Dynamic len(set(a[L:R])) 树套树
Dynamic len(set(a[L:R])) Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://uva.onlinejudge.org/in ...
- UVA - 1625 Color Length[序列DP 提前计算代价]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
随机推荐
- Python中的循环语句
Python中有while循环和for循环 下面以一个小例子来说明一下用法,用户输入一些数字,输出这些数字中的最大值和最小值 array = [5,4,3,1] for i in array: pri ...
- 远程控制Ubuntu系统小结
一.在远程控制的Ubuntu上,按shift键总会出现中文字符 因为在Ubuntu中,默认启动搜狗输入法,导致在按shift键时,不停出现中文字符 一开始以为是因为远程控制,在主控机和被控机的输入法之 ...
- 用vue写一个仿简书的轮播图
原文地址:用vue写一个仿简书的轮播图 先展示最终效果: Vue的理念是以数据驱动视图,所以拒绝通过改变元素的margin-top来实现滚动效果.写好css样式,只需改变每张图片的class即可实现轮 ...
- JMETER CSS JQUERY EXTRACTOR
我想如果你在这里,你可能已经访问了我们关于变量提取的JMeter系列: XPath Extractor:使用XPath Expressions从XML响应中提取内容, Regexp Extractor ...
- 为什么要问Servlet的初始化时间
Servlet的init方法到底是在什么时候调用的? j2ee specification和java doc中有以下说明 如果load-on-startup设置为>=0, 部署的时候就会调用. ...
- VALID_FOR in db standby
检查DG 装填: 目标主机检查mrp是否正常: SELECT PROCESS FROM V$MANAGED_STANDBY WHERE PROCESS LIKE 'MRP%';--若mrp没有启动,则 ...
- Java面向对象_简单工厂模式
概念:由一个工厂对象决定创建出哪一种产品类的实例. public class Practice14 { public static void main(String[] args) { // TODO ...
- Linux Shell命令系列(5) VI编辑器
vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器,这里只是简单地介绍一下它的用法和一小部分指令.由于对Unix及Linux系统的任何版本,vi编辑器是完全相 ...
- Day1上
上午发挥强差人意.心态不好,编译器一直报错,心里比较慌. t1 每一个P枚举底数 .可二分 T2 暴力30 打标60 x^3-y^3=(x-y)*(x^2+xy+y^2). x-y==1. ! p ...
- Eclipse下git如何创建分支
1.项目–Team–Switch To –New Branch 2.Branch name 填写自己的版本号,然后Finish即可 3.将分支内容Push到远程服务器上