传送门

题目大意

有$n$个格子从左到右依次挨着,一开始有两枚棋子分布在$A,B$某一个或两个格子里,有$m$个操作,第$i$次操作要求你把其中一个棋子移到$X_i$上,移动一个棋子的代价是两个格子之间的距离,求移完所有棋子的代价之和的最小值。

题解

首先这题显然不能贪心,后面的要求会对当前的选择产生影响。

考虑朴素的$n^2$的$DP$,设$F_{i,k}$表示满足恰好前$i$个操作时,除了处在$X_i$处的棋子,另一个棋子处在$k$的格子处的代价。

那么转移很显然$F_{i+1,k}=F_{i,k}+|X_i-X_{i+1}|$。

特别的,有另一处转移$F_{i+1,X_i}=\min\{F_{i,j}+|j-X_{i+1}|\}$。

这个第二处转移中绝对值看起来非常碍眼,考虑将按照$j\leq X_i,j\geq X_i$的情况变成了两类。

不难发现

对于$j\leq X_i,F_{i+1,X_i}=\min\{F_{i,j}+X_{i+1}-j\}$

对于$j\geq X_i,F_{i+1,X_i}=\min\{F_{i,j}+j-X_{i+1}\}$

考虑用线段树维护$F_{i,j}-j,F_{i,j}+j$,每次第一处转移相当于全局加,第二种转移相当于取一个前缀或后缀的最小值,然后转移就是单点取$min$。

初始时,令$X_0=B,F_{0,A}=0$其余的$F=INF$,每次转移,每个点取$min$即可。

复杂度$O(m\log n)$。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define M 200020
#define INF 10000000000000ll
using namespace std;
namespace IO{
const int BS=(1<<20); char Buffer[BS],*HD,*TL;
char Getchar(){if(HD==TL){TL=(HD=Buffer)+fread(Buffer,1,BS,stdin);} return (HD==TL)?EOF:*HD++;}
int read(){
int nm=0,fh=1; char cw=Getchar();
for(;!isdigit(cw);cw=Getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=Getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
}
using namespace IO;
int n,m,A,B,G[M]; LL maxn,p[M<<2][2],ans=INF;
void pushup(int x){
p[x][0]=min(p[x<<1][0],p[x<<1|1][0]);
p[x][1]=min(p[x<<1][1],p[x<<1|1][1]);
}
void build(int x,int l,int r){
if(l==r){
if(l==A) p[x][0]=-l,p[x][1]=l;
else p[x][0]=p[x][1]=INF; return;
}
int mid=((l+r)>>1); build(x<<1,l,mid);
build(x<<1|1,mid+1,r),pushup(x);
}
LL qry(int x,int l,int r,int L,int R,int kd){
if(r<L||R<l) return INF; if(L<=l&&r<=R) return p[x][kd];
int mid=((l+r)>>1); return min(qry(x<<1,l,mid,L,R,kd),qry(x<<1|1,mid+1,r,L,R,kd));
}
void mdf(int x,int l,int r,int pos,LL dt){
if(l==r){p[x][0]=min(p[x][0],dt-l),p[x][1]=min(p[x][1],dt+l);return;}
int mid=((l+r)>>1);if(pos<=mid) mdf(x<<1,l,mid,pos,dt);else mdf(x<<1|1,mid+1,r,pos,dt); pushup(x);
}
void dfs(int x,int l,int r){
if(l==r){ans=min(ans,p[x][0]+(LL)l);return;}
int mid=((l+r)>>1);dfs(x<<1,l,mid),dfs(x<<1|1,mid+1,r);
}
int main(){
n=read(),m=read(),A=read(),B=read(),G[0]=B,build(1,1,n);
for(int i=1;i<=m;i++){
G[i]=read(); LL t1=G[i]+qry(1,1,n,1,G[i],0)+maxn;
LL t2=qry(1,1,n,G[i],n,1)-G[i]+maxn,dt=abs(G[i]-G[i-1]);
maxn+=dt,mdf(1,1,n,G[i-1],min(t1,t2)-maxn);
} dfs(1,1,n),printf("%lld\n",maxn+ans); return 0;
}

Arc073_F Many Moves的更多相关文章

  1. [LeetCode] Minimum Moves to Equal Array Elements II 最少移动次数使数组元素相等之二

    Given a non-empty integer array, find the minimum number of moves required to make all array element ...

  2. [LeetCode] Minimum Moves to Equal Array Elements 最少移动次数使数组元素相等

    Given a non-empty integer array of size n, find the minimum number of moves required to make all arr ...

  3. LeetCode Minimum Moves to Equal Array Elements II

    原题链接在这里:https://leetcode.com/problems/minimum-moves-to-equal-array-elements-ii/ 题目: Given a non-empt ...

  4. LeetCode Minimum Moves to Equal Array Elements

    原题链接在这里:https://leetcode.com/problems/minimum-moves-to-equal-array-elements/ 题目: Given a non-empty i ...

  5. LeetCode 453 Minimum Moves to Equal Array Elements

    Problem: Given a non-empty integer array of size n, find the minimum number of moves required to mak ...

  6. Knight Moves

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  7. HDU 1372 Knight Moves

    最近在学习广搜  这道题同样是一道简单广搜题=0= 题意:(百度复制粘贴0.0) 题意:给出骑士的骑士位置和目标位置,计算骑士要走多少步 思路:首先要做这道题必须要理解国际象棋中骑士的走法,国际象棋中 ...

  8. [宽度优先搜索] HDU 1372 Knight Moves

    Knight Moves Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  9. HDU 1372 Knight Moves (bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1372 Knight Moves Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. Linux删除乱码文件的方法

    当文件名为乱码的时候,无法通过键盘输入文件名,所以在终端下就不能直接利用rm,mv等命令管理文件了. 我们可以通过以下几种方法删除linux下的乱码文件.(文件名为乱码) l  方法1 我们知道每个文 ...

  2. C语言合并两个集合(L,L1) 将L1中不在L中的元素插入到L线性表中

    void main(){ Sqlist L,L1; InitList(&L); InitList(&L1); ListInsert(&L, 1, 2); ListInsert( ...

  3. java类型系统知识点总结

    下面的东西是在一天内用了三个编辑器写的,所以风格有点不太统一 一:下午完成 主要看了java的类型系统,具体如下. 1)接口 作为又一个引用类型,接口可以说是一种特殊的类,可以有属性和行为(字段和方法 ...

  4. 【BZOJ4184】shallot 线段树+vector+线性基

    [BZOJ4184]shallot Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从 ...

  5. zoj 2362 Beloved Sons【二分匹配】

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2361 来源:http://acm.hust.edu.cn/vjudg ...

  6. 关于UIView的hitTest:withEvent:方法的理解

    闲来无事 观摩别人的项目 常常发现对UIView的hitTest:withEvent:方法的重写,以前也查过这个方法的用法作用,但是时间一长又忘记了.今天再次看到,就记录一下. 用户触摸屏幕后事件的传 ...

  7. 我的Android进阶之旅------>Android关于TextWatcher的初步了解

    首先来看一下TextWatcher的源代码 package android.text; /** * When an object of a type is attached to an Editabl ...

  8. ALV调用的几个函数

     转 ALV的调用主要由以下几个标准函数实现,所有函数的输入输出参数必须大写,否则系统会出现异常中止,相关函数如下: 1)REUSE_ALV_FIENDCATALOG_MERGE:根据内表结构返回FI ...

  9. C# 串口调试助手源码

    本方法,禁用跨进程错误(做法不太好,但是对于单片机出身的人来说,好理解,能用就行). 基本功能: 1.点串口号的下拉菜单自动当前检索设备管理器的COM 2.发送模式可选,hex和string两种 3. ...

  10. AbstractQueuedSynchronizer(一)

    应该将子类定义为非公共内部帮助器类,一般并发包类用内部类Sync sync来继承并实现.为实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架.此类的设计目 ...