https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

【将输入转化为输出:概率分布】

When we develop a model for probabilistic classification, we aim to map the model's inputs to probabilistic predictions, and we often train our model by incrementally adjusting the model's parameters so that our predictions get closer and closer to ground-truth probabilities.

In this post, we'll focus on models that assume that classes are mutually exclusive. For example, if we're interested in determining whether an image is best described as a landscape or as a house or as something else, then our model might accept an image as input and produce three numbers as output, each representing the probability of a single class.

During training, we might put in an image of a landscape, and we hope that our model produces predictions that are close to the ground-truth class probabilities y=(1.0,0.0,0.0)Ty=(1.0,0.0,0.0)T. If our model predicts a different distribution, say y^=(0.4,0.1,0.5)Ty^=(0.4,0.1,0.5)T, then we'd like to nudge the parameters so that y^y^ gets closer to yy.

cross entropy 交叉熵 提供了一种量化的解决办法】

But what exactly do we mean by "gets closer to"? In particular, how should we measure the difference between y^y^ and yy?

This post describes one possible measure, cross entropy, and describes why it's reasonable for the task of classification.

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

zh.wikipedia.org/wiki/相对熵

KL散度是两个概率分布P和Q差别的非对称性的度量。 KL散度是用来 度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

en.wikipedia.org/wiki/Kullback–Leibler_divergence

In the context of machine learningDKL(PQ) is often called the information gain achieved if P is used instead of Q. By analogy with information theory, it is also called the relative entropy of P with respect to Q. In the context of coding theoryDKL(PQ) can be constructed as measuring the expected number of extra bits required to codesamples from P using a code optimized for Q rather than the code optimized for P.

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

When we develop a probabilistic model over mutually exclusive classes, we need a way to measure the difference between predicted probabilities y^y^ and ground-truth probabilities yy, and during training we try to tune parameters so that this difference is minimized.

But what exactly do we mean by "gets closer to"?的更多相关文章

  1. CSS——关于z-index及层叠上下文(stacking context)

    以下内容根据CSS规范翻译. z-index 'z-index'Value: auto | <integer> | inheritInitial: autoApplies to: posi ...

  2. 基于Ubuntu Hadoop的群集搭建Hive

    Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...

  3. Java

    2016-12-17  21:10:28 吉祥物:Duke(公爵)    Logo:咖啡(爪哇岛盛产咖啡)  An overview of the software development proce ...

  4. Netty实现高性能RPC服务器优化篇之消息序列化

    在本人写的前一篇文章中,谈及有关如何利用Netty开发实现,高性能RPC服务器的一些设计思路.设计原理,以及具体的实现方案(具体参见:谈谈如何使用Netty开发实现高性能的RPC服务器).在文章的最后 ...

  5. 基于Netty打造RPC服务器设计经验谈

    自从在园子里,发表了两篇如何基于Netty构建RPC服务器的文章:谈谈如何使用Netty开发实现高性能的RPC服务器.Netty实现高性能RPC服务器优化篇之消息序列化 之后,收到了很多同行.园友们热 ...

  6. Netty构建分布式消息队列实现原理浅析

    在本人的上一篇博客文章:Netty构建分布式消息队列(AvatarMQ)设计指南之架构篇 中,重点向大家介绍了AvatarMQ主要构成模块以及目前存在的优缺点.最后以一个生产者.消费者传递消息的例子, ...

  7. Fedora 24中的日志管理

    Introduction Log files are files that contain messages about the system, including the kernel, servi ...

  8. [Mahout] 完整部署过程

    概述        Mahout底层依赖Hadoop,部署Mahout过程中最困难的就是Hadoop的部署      本文假设用户本身没有进行Hadoop的部署,记述部署Mahout的过程       ...

  9. 【java】jstack

    介绍 jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项"-J-d64",Windows的jsta ...

  10. Underscore.js

    概述 Underscore.js是一个很精干的库,压缩后只有4KB.它提供了几十种函数式编程的方法,弥补了标准库的不足,大大方便了JavaScript的编程.MVC框架Backbone.js就将这个库 ...

随机推荐

  1. python解析json文件报错No JSON object could be decoded

    2017-04-25 可用Nodepad++将json文件打开并以UTF8无BOM格式保存.

  2. 转:Eclipse常见问题,快捷键收集

    Eclipse的编辑功能非常强大,掌握了Eclipse快捷键功能,能够大大提高开发效率.Eclipse中有如下一些和编辑相关的快捷键. 1.[ALT+/] Sysout+ System.out.pri ...

  3. [Functional Programming] Define Discrete State Transitions using the State ADT

    We build our first state transactions as two discrete transactions, each working on a specific porti ...

  4. Centos 通过yum的方式升级内核

    在安装某些软件时,可能对我们的系统内核版本有要求. 比如在安装docker要满足一定的条件,对于centos系统,要求必须是64位,并且内核版本是3.10以上. 如果你的centos操作系统内核低于3 ...

  5. C++ 模板详解(二)(转)

    四.类模板的默认模板类型形参 1.可以为类模板的类型形参提供默认值,但不能为函数模板的类型形参提供默认值.函数模板和类模板都可以为模板的非类型形参提供默认值. 2.类模板的类型形参默认值形式为:tem ...

  6. Android Shader 颜色、图像渲染 paint.setXfermode

    Shader Shader是一个基类,表示在绘制期间颜色的水平跨度 它的子类被嵌入在Paint中使用,调用paint.setShader(shader). 除Bitmap外的其他对象,使用该Paint ...

  7. 对象序列和反序列化Xml

    1. XmlArray和XmlArrayItem XmlArray和XmlArrayItem是不同的,XmlArray是指这个数组叫什么,XmlArrayItem 值数组的每个元素叫什么. <X ...

  8. eclipse / ADT(Android Develop Tool) 一些方便的初始设置

      1.设置编辑窗口的背景色eclipse的主编辑窗口的背景色,默认为白色,个人感觉太亮,推荐保护视力的“墨绿色”,当然也可以根据个人喜好更改,如下图 2.主编辑窗口的字体字号等,也可以根据自己的爱好 ...

  9. Cocos2d-x教程(35)-三维拾取Ray-AABB碰撞检測算法

    欢迎增加Cocos2d-x 交流群:193411763 转载时请注明原文出处 :http://blog.csdn.net/u012945598/article/details/39927911 --- ...

  10. Android开源--PullToRefresh

    开源地址: https://github.com/chrisbanes/Android-PullToRefresh 简单介绍:PullToRefresh是一款支持ListView,GridView,V ...