# coding: utf-8

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#print("hello")

#载入数据集
mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True)

#每个批次的大小,训练时一次100张放入神经网络中训练
batch_size = 100

#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
#0-9十个数字
y = tf.placeholder(tf.float32,[None,10])

#创建一个神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#
with tf.Session() as sess:
  sess.run(init)
  for epoch in range(100):
    for batch in range(n_batch):
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

    #测试准确率
    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
    print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(acc))

#运行结果

Extracting F:\TensorflowProject\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-labels-idx1-ubyte.gz
Iter: 0 ,Testing Accuracy 0.8322
Iter: 1 ,Testing Accuracy 0.872
Iter: 2 ,Testing Accuracy 0.8808
Iter: 3 ,Testing Accuracy 0.888
Iter: 4 ,Testing Accuracy 0.8938
Iter: 5 ,Testing Accuracy 0.8969
Iter: 6 ,Testing Accuracy 0.899
Iter: 7 ,Testing Accuracy 0.9015
Iter: 8 ,Testing Accuracy 0.9038
Iter: 9 ,Testing Accuracy 0.9055
Iter: 10 ,Testing Accuracy 0.9063
Iter: 11 ,Testing Accuracy 0.9077
Iter: 12 ,Testing Accuracy 0.9078
......
Iter: 38 ,Testing Accuracy 0.9192
Iter: 39 ,Testing Accuracy 0.9195
Iter: 40 ,Testing Accuracy 0.92
Iter: 41 ,Testing Accuracy 0.9199
Iter: 42 ,Testing Accuracy 0.9205
Iter: 43 ,Testing Accuracy 0.9201
Iter: 44 ,Testing Accuracy 0.921
Iter: 45 ,Testing Accuracy 0.9207
Iter: 46 ,Testing Accuracy 0.9214
Iter: 47 ,Testing Accuracy 0.9212
Iter: 48 ,Testing Accuracy 0.9215
Iter: 49 ,Testing Accuracy 0.9213
.....
Iter: 93 ,Testing Accuracy 0.9254
Iter: 94 ,Testing Accuracy 0.9259
Iter: 95 ,Testing Accuracy 0.926
Iter: 96 ,Testing Accuracy 0.9262
Iter: 97 ,Testing Accuracy 0.9263
Iter: 98 ,Testing Accuracy 0.9262
Iter: 99 ,Testing Accuracy 0.926

Tensorflow手写数字识别训练(梯度下降法)的更多相关文章

  1. TensorFlow------单层(全连接层)实现手写数字识别训练及测试实例

    TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist ...

  2. Tensorflow手写数字识别(交叉熵)练习

    # coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #pr ...

  3. tensorflow手写数字识别(有注释)

    import tensorflow as tf import numpy as np # const = tf.constant(2.0, name='const') # b = tf.placeho ...

  4. tensorflow 手写数字识别

    https://www.kaggle.com/kakauandme/tensorflow-deep-nn 本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接 import numpy ...

  5. Tensorflow手写数字识别---MNIST

    MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000

  6. 卷积神经网络应用于tensorflow手写数字识别(第三版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  7. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  8. Tensorflow2.0-mnist手写数字识别示例

    Tensorflow2.0-mnist手写数字识别示例   读书不觉春已深,一寸光阴一寸金. 简介:通过CNN 卷积神经网络训练后识别出手写图片,测试图片mnist数据集中的0.1.2.4.     ...

  9. 手写数字识别 ----在已经训练好的数据上根据28*28的图片获取识别概率(基于Tensorflow,Python)

    通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Pytho ...

随机推荐

  1. 关于js序列化时间的方法

    var time = new Date(); var otime = getMyDate(time); //将毫秒转换成 年月日+时分秒 格式的 (1970-01-11 00:00:00) funct ...

  2. python3.x学习笔记2018-02-05更新

    前言:python3.x部分学习笔记,有意交流学习者可加wechat:YWNlODAyMzU5MTEzMTQ=.如果笔记内容有错,请指出来. 对数据类型的操作 可变数据类型:列表,集合,字典 列表: ...

  3. hdu-3068-最长回文(manacher算法模板)

    题目链接 /* Name:hdu-3068-最长回文 Copyright: Author: Date: 2018/4/24 16:12:45 Description: manacher算法模板 */ ...

  4. jmeter请求中上传图片

    1.请求中上传图片 把图片放在bin目录下:multipart/form-data 先把照片发送给阿里,阿里返回image_id:然后用后置条件正则表达式匹配并保存image_id 下次请求直接用im ...

  5. 利用HTML5开发Android笔记(下篇)

    资源来自于www.mhtml5.com 杨丰盛老师成都场的PPT分享 一个很简明的demo 可以作为入门基础 学习的过程中做了点笔记 整理如下 虽然内容比较简单 但是数量还是比较多的 所以分了3篇 ( ...

  6. HihoCoder1181欧拉路(Fleury算法求欧拉路径)

    描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...

  7. MySQL_截止昨日南京市所有在职业务员业绩排名-20170116

    #计算南京销售员总业绩排名 数据结果已打乱处理 #职工信息表包含在职和离职两种状态 因此不能以这表当做主表 不然离职人的数据也会出现 以毛利表为主表 销售员限制在昨天在职的销售范围内 且和后面left ...

  8. Unity3D研究院之Assetbundle的原理(六十一)

    www.xuanyusong.com/archives/2373 Assetbundle 是Unity Pro提供提供的功能,它可以把多个游戏对象或者资源二进制文件封装到Assetbundle中,提供 ...

  9. SOA、微服务与服务网格

    SOA架构解析 SOA 全称是: Service Oriented Architecture,中文释义为 “面向服务的架构”,它是一种设计理念,其中包含多个服务, 服务之间通过相互依赖最终提供一系列完 ...

  10. Makefile中的路径

    使用 $(shell pwd) 可以在Makefile中指定为当前Makefile所在目录的路径