洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)
题意
Sol
树上差分模板题
发现自己傻傻的分不清边差分和点差分
边差分就是对边进行操作,我们在\(u, v\)除加上\(val\),同时在\(lca\)处减去\(2 * val\)
点差分是对点操作,我们在\(u, v\)处加上\(val\),在\(lca\)和\(fa[lca]\)处减去\(val\)
就本题而言,属于点差分
#include<bits/stdc++.h>
const int MAXN = 1e5 + 10;
using namespace std;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, dep[MAXN], fa[MAXN][21], dfn[MAXN], val[MAXN], tot;
vector<int> v[MAXN];
void dfs(int x, int _fa) {
fa[x][0] = _fa; dep[x] = dep[fa[x][0]] + 1; dfn[++tot] = x;
for(int i = 1; i <= 20; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(int i = 0, to; i < v[x].size(); i++) {
if((to = v[x][i]) == _fa) continue;
dfs(to, x);
}
}
int LCA(int x, int y) {
if(dep[x] < dep[y]) swap(x, y);
for(int i = 20; i >= 0; i--) if(dep[fa[x][i]] >= dep[y]) x = fa[x][i];
if(x == y) return x;
for(int i = 20; i >= 0; i--) if(fa[x][i] ^ fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int main() {
N = read(); K = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
for(int i = 1; i <= K; i++) {
int x = read(), y = read();
val[x]++; val[y]++;
int lca = LCA(x, y);
val[lca]--; val[fa[lca][0]]--;
}
int ans = 0;
for(int i = N; i >= 1; i--) val[fa[dfn[i]][0]] += val[dfn[i]];
for(int i = 1; i <= N; i++) ans = max(ans, val[i]);
printf("%d", ans);
return 0;
}
洛谷P3128 [USACO15DEC]最大流Max Flow(树上差分)的更多相关文章
- 洛谷 P3128 [ USACO15DEC ] 最大流Max Flow —— 树上差分
题目:https://www.luogu.org/problemnew/show/P3128 倍增求 lca 也写错了活该第一次惨WA. 代码如下: #include<iostream> ...
- 洛谷3128 [USACO15DEC]最大流Max Flow——树上差分
题目:https://www.luogu.org/problemnew/show/P3128 树上差分.用离线lca,邻接表存好方便. #include<iostream> #includ ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow-树上差分(点权/点覆盖)(模板题)
因为徐州现场赛的G是树上差分+组合数学,但是比赛的时候没有写出来(自闭),背锅. 会差分数组但是不会树上差分,然后就学了一下. 看了一些东西之后,对树上差分写一点个人的理解: 首先要知道在树上,两点之 ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow
P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow [树链剖分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow [倍增LCA]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- 洛谷P3128 [USACO15DEC]最大流Max Flow (树上差分)
###题目链接### 题目大意: 给你一棵树,k 次操作,每次操作中有 a b 两点,这两点路上的所有点都被标记一次.问你 k 次操作之后,整棵树上的点中被标记的最大次数是多少. 分析: 1.由于数 ...
- P3128 [USACO15DEC]最大流Max Flow (树上差分)
题目描述 Farmer John has installed a new system of N-1N−1 pipes to transport milk between the NN stalls ...
- 洛谷 P3128 [USACO15DEC]最大流Max Flow
题目描述 \(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编号从\(1\)到\(N\).所有隔间都被管道连通了. \(FJ\)有\(K(1≤K≤10 ...
随机推荐
- How can I use wget in Windows
http://www.ehow.com/how_10054131_use-wget-windows.html
- 001 开发环境搭建、安卓项目结构、R文件位置、asset目录创建
1.安卓开发平台搭建 (1)下载SDK基础工具包(自己的百度云中) (2)将下载的安装包(android-sdk_r24.4.1-windows.zip)解压后,放到以下路径 C:\SoftAppli ...
- python 批量下载 spring 的 xsd
#coding=utf-8 import os import urllib import urllib2 import re from bs4 import BeautifulSoup # 利用 ur ...
- dropzone手动上传
html: <div class="field"> <div id="file" class="dropzone"> ...
- day35 数据库的初步认识
一. 数据库的由来分类 1. 数据库的概念 百度定义: 数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增.截取.更新.删除等操作. 所谓“数据库”系 ...
- TensorFlow入门测试程序
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist=input_data. ...
- Linux内核硬件访问技术
① 驱动程序控制设备,主要是通过访问设备内的寄存器来达到控制目的.因此我们讨论如何访问硬件,就成了如何访问这些寄存器. ② 在Linux系统中,无论是内核程序还是应用程序,都只能使用虚拟地址,而芯片手 ...
- .NET Core单元测试覆盖率统计coverlet配置和使用
https://segmentfault.com/a/1190000017569492 需要使用: 使用 Moq 测试.NET Core 应用 https://www.cnblogs.com/c ...
- my27_OGG MySQL To MySQL错误汇总
OGG-00446 2019-02-12T14:57:57.668+0800 ERROR OGG-00446 Oracle GoldenGate Delivery for MySQL, r1.prm: ...
- java——io、字节流缓冲区拷贝文件、字节缓冲流
使用try catch finally关闭文件流: 写入文件: import java.io.*; public class exp{ public static void main(String[] ...