题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162

意义:给出一些点,用线问使所有点直接或间接连通,需要多长;

思路:裸最小生成树;

法1:

prim算法:MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。(这短话复制的别人的,感觉写的蛮好的)

prim算法就是从待选点集中依次选出距离已选点集中距离最小的点加入已选点集中;

代码:

 #include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#define MAXN 100+10
#define INF 9999999999
using namespace std; int n, tag[MAXN];
double mp[MAXN][MAXN], low[MAXN]; double prime(void){
memset(tag, , sizeof(tag)); //×××标记数组清 0
int s=;
double cnt=;
for(int i=; i<=n; i++){ //×××从点 1 开始
low[i]=mp[s][i];
}
for(int i=; i<=n; i++){
double min=INF;
for(int j=; j<=n; j++){ //×××找到未添加点中到以添加点中距离最近的点即当前要添加的点
if(!tag[j]&&min>low[j]){
min=low[j];
s=j;
}
}
cnt+=min; //***本题中不存在不能连同的情况,所以不需要加 if(min>=INF) return -1
tag[s]=;
for(int j=; j<=n; j++){
if(!tag[j]&&low[j]>mp[s][j]){ //×××更新low数组
low[j]=mp[s][j];
}
}
}
return cnt;
} int main(void){
while(~scanf("%d", &n)){
pair<double, double> p[MAXN];
for(int i=; i<=n; i++){
scanf("%lf%lf", &p[i].first, &p[i].second);
}
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
mp[i][j]=sqrt((p[j].first-p[i].first)*(p[j].first-p[i].first)+(p[j].second-p[i].second)*(p[j].second-p[i].second));
}
}
double ans=prime();
printf("%.2lf\n", ans);
}
return ;
}

法2:

kruscal算法:

将图中边按其权值由小到大的次序顺序选取,若选边后不形成回路,则保留作为一条边,若形成回路则除去.依次选够(n-1)条边,即得最小生成树.(n为顶点数)

代码:

 #include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#define MAXN 10000+10
using namespace std; struct node{
int x, y;
double weight;
}map[MAXN]; int m, n, pre[MAXN]; bool cmp(node a, node b){
return a.weight < b.weight;
} int find(int x){
while(pre[x]!=x){
x=pre[x];
}
return x;
} double join(node a){
int px=find(a.x);
int py=find(a.y);
if(px!=py){
pre[px]=py;
return a.weight;
}else{
return ; //××××若成环则返回 0
}
} double kruskal(void){
for(int i=; i<=n; i++){
pre[i]=i;
}
double cnt=;
sort(map, map+m, cmp);
for(int i=; i<m; i++){
cnt+=join(map[i]);
}
return cnt;
} int main(void){
while(~scanf("%d", &n)){
pair<double, double> p[MAXN];
for(int i=; i<=n; i++){
scanf("%lf%lf", &p[i].first, &p[i].second);
}
int k=;
for(int i=; i<=n; i++){
for(int j=i+; j<=n; j++){
double cnt=sqrt((p[i].first-p[j].first)*(p[i].first-p[j].first)+(p[i].second-p[j].second)*(p[i].second-p[j].second));
map[k].x=i;
map[k].y=j;
map[k].weight=cnt;
k++;
}
}
m=k;
double ans=kruskal();
printf("%.2lf\n", ans);
}
return ;
}

hdu1162(最小生成树 prim or kruscal模板)的更多相关文章

  1. hdu1162(最小生成树 prim or kruscal)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 意义:给出一些点,用线问使所有点直接或间接连通,需要多长: 思路:裸最小生成树: 法1: pri ...

  2. 最小生成树--prim+优先队列优化模板

    prim+优先队列模板: #include<stdio.h> //大概要这些头文件 #include<string.h> #include<queue> #incl ...

  3. 最小生成树prim和kruskal模板

    prim: int cost[MAX_V][MAX_V]; //cost[u][v]表示边e=(u,v)的权值(不存在的情况下设为INF) int mincost[MAX_V]; //从集合X出发的每 ...

  4. poj1861 最小生成树 prim &amp; kruskal

    // poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...

  5. POJ 1258 Agri-Net (最小生成树+Prim)

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39820   Accepted: 16192 Descri ...

  6. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  7. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  8. 最小生成树Prim算法(邻接矩阵和邻接表)

    最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...

  9. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

随机推荐

  1. Java-API:java.io百科

    ylbtech-Java-API:java.io百科 Java的核心库java.io提供了全面的IO接口.包括:文件读写.标准设备输出等.Java中IO是以流为基础进行输入输出的,所有数据被串行化写入 ...

  2. c# webapi2 实用详解

    本文介绍webapi的使用知识 发布webapi的问题 配置问题 webapi的项目要前端访问,需要在web.config配置文件中添加如下配置 在system.webServer节点下面添加 < ...

  3. PowerDesigner中的域(Domain)的概念及应用

    一.概念 域:实际上就是一个取值范围,也可扩展为一个数据类型.域可以定义检查约束.取值范围.最大值.最小值.默认值等. 域是通过用户自定义类型实现的,定义一个域的后,可以实多个实体的属性共享,这也模型 ...

  4. Python 学习之---文件目录处理

    前言:有关文件夹与文件的查找,删除等功能 在 os 模块中实现.使用时需先导入这个模块, 导入的方法是:import os   一.取得当前目录 s = os.getcwd() s 中保存的是当前目录 ...

  5. sys模块 进度条百分比

    用于提供对Python解释器相关的操作: sys.argv           命令行参数List,第一个元素是程序本身路径 sys.exit(n)        退出程序,正常退出时exit(0) ...

  6. springMVC 返回json乱码问题

    多次遇见过这个问题,springMVC下返回给前端的json字符串,中文总是乱码,每次都要去翻一下之前的代码来看解决办法,有必要做个笔记记一下这个问题了. 解决方法: 在方法注解中加入如下: @Req ...

  7. 项目一:第九天 1、前台客户登录 2、Jquery citypicker省市区三级联动插件 4、业务受理(在线下单)

    1. 前台客户登录 2. Jquery citypicker省市区三级联动插件 3. 百度地图介绍 4. 业务受理(在线下单) 1 实现前台系统登录功能 1.1 Md5加密 admin(明文)---- ...

  8. Posters TopCoder - 1684

    传送门 分析 首先我们不难想到1e4^5的暴力枚举,但显然这是不行的,于是我们考虑对于每一张海报肯定有一种最优情况使得它至少有一条边要么靠着板子的边要么靠着之前的某一张海报的边,这样我们便可以将复杂度 ...

  9. java全栈day10--接口 多态

    接口的概念 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”. 接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于接口的子类)来完成.这样将功能的定义与 ...

  10. window.location和window.location.href和document.location的关系

    1,首先来区分window.location和window.location.href. window.location.href是一个字符串. 而window.location是一个对象,包含属性有 ...