hdu1162(最小生成树 prim or kruscal模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162
意义:给出一些点,用线问使所有点直接或间接连通,需要多长;
思路:裸最小生成树;
法1:
prim算法:MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。(这短话复制的别人的,感觉写的蛮好的)
prim算法就是从待选点集中依次选出距离已选点集中距离最小的点加入已选点集中;
代码:
#include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#define MAXN 100+10
#define INF 9999999999
using namespace std; int n, tag[MAXN];
double mp[MAXN][MAXN], low[MAXN]; double prime(void){
memset(tag, , sizeof(tag)); //×××标记数组清 0
int s=;
double cnt=;
for(int i=; i<=n; i++){ //×××从点 1 开始
low[i]=mp[s][i];
}
for(int i=; i<=n; i++){
double min=INF;
for(int j=; j<=n; j++){ //×××找到未添加点中到以添加点中距离最近的点即当前要添加的点
if(!tag[j]&&min>low[j]){
min=low[j];
s=j;
}
}
cnt+=min; //***本题中不存在不能连同的情况,所以不需要加 if(min>=INF) return -1
tag[s]=;
for(int j=; j<=n; j++){
if(!tag[j]&&low[j]>mp[s][j]){ //×××更新low数组
low[j]=mp[s][j];
}
}
}
return cnt;
} int main(void){
while(~scanf("%d", &n)){
pair<double, double> p[MAXN];
for(int i=; i<=n; i++){
scanf("%lf%lf", &p[i].first, &p[i].second);
}
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
mp[i][j]=sqrt((p[j].first-p[i].first)*(p[j].first-p[i].first)+(p[j].second-p[i].second)*(p[j].second-p[i].second));
}
}
double ans=prime();
printf("%.2lf\n", ans);
}
return ;
}
法2:
kruscal算法:
将图中边按其权值由小到大的次序顺序选取,若选边后不形成回路,则保留作为一条边,若形成回路则除去.依次选够(n-1)条边,即得最小生成树.(n为顶点数)
代码:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#define MAXN 10000+10
using namespace std; struct node{
int x, y;
double weight;
}map[MAXN]; int m, n, pre[MAXN]; bool cmp(node a, node b){
return a.weight < b.weight;
} int find(int x){
while(pre[x]!=x){
x=pre[x];
}
return x;
} double join(node a){
int px=find(a.x);
int py=find(a.y);
if(px!=py){
pre[px]=py;
return a.weight;
}else{
return ; //××××若成环则返回 0
}
} double kruskal(void){
for(int i=; i<=n; i++){
pre[i]=i;
}
double cnt=;
sort(map, map+m, cmp);
for(int i=; i<m; i++){
cnt+=join(map[i]);
}
return cnt;
} int main(void){
while(~scanf("%d", &n)){
pair<double, double> p[MAXN];
for(int i=; i<=n; i++){
scanf("%lf%lf", &p[i].first, &p[i].second);
}
int k=;
for(int i=; i<=n; i++){
for(int j=i+; j<=n; j++){
double cnt=sqrt((p[i].first-p[j].first)*(p[i].first-p[j].first)+(p[i].second-p[j].second)*(p[i].second-p[j].second));
map[k].x=i;
map[k].y=j;
map[k].weight=cnt;
k++;
}
}
m=k;
double ans=kruskal();
printf("%.2lf\n", ans);
}
return ;
}
hdu1162(最小生成树 prim or kruscal模板)的更多相关文章
- hdu1162(最小生成树 prim or kruscal)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 意义:给出一些点,用线问使所有点直接或间接连通,需要多长: 思路:裸最小生成树: 法1: pri ...
- 最小生成树--prim+优先队列优化模板
prim+优先队列模板: #include<stdio.h> //大概要这些头文件 #include<string.h> #include<queue> #incl ...
- 最小生成树prim和kruskal模板
prim: int cost[MAX_V][MAX_V]; //cost[u][v]表示边e=(u,v)的权值(不存在的情况下设为INF) int mincost[MAX_V]; //从集合X出发的每 ...
- poj1861 最小生成树 prim & kruskal
// poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...
- POJ 1258 Agri-Net (最小生成树+Prim)
Agri-Net Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39820 Accepted: 16192 Descri ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树Prim算法(邻接矩阵和邻接表)
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
随机推荐
- POJ3009(dfs)
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17672 Accepted: 7262 Desc ...
- Swing编程把图片放入frame里。先不作为背景图片
总结: 总之遵循一条,所有的组件都不是直接放入frame里的.还要label的重要性,panel.面板类 虽然我还是不会做,但总算出了个图片出来~~~~~~~~~~~~~ package com.kk ...
- ThreadPoolExecutor的corePoolSize和maximumPoolSize
按照JDK文档的描述, 如果池中的实际线程数小于corePoolSize,无论是否其中有空闲的线程,都会给新的任务产生新的线程 如果池中的线程数>corePoolSize and <max ...
- 关于WinPE安装操作系统
在WinPE安装操作系统,最好用虚拟光驱打开安装镜像文件,或者把镜像文件解压后直接安装. 最好不要用工具盘里所带的一键安装,复制等等功能,因为这些功能往往会安装一些其他的附带功能,不是清洁版的.
- O2O和B2C、C2C的区别
B2C.C2C是在线支付,购买的商品会塞到箱子里通过物流公司送到你手中;O2O是在线支付,购买线下的商品.服务,再到线下去享受服务. O2O模式的核心很简单,就是把线上的消费者带到现实的商店中去.在线 ...
- C# 正规表达式
在C#中怎么用正则表达式限制文本框内不能输入数字?只能输入数字:"^[0-9]*$".只能输入n位的数字:"^\d{n}$".只能输入至少n位的数字:" ...
- js和jQuery判断数组是否包含指定元素
最近遇见一些前台基础性问题,在这里笔者觉得有必要记录一下,为了以后自己查阅或者读者查看. 已知var arr = ['java','js','php','C++']; 问题:arr数组是否包含‘jav ...
- bash: telnet: command not found
//安装telnet服务 yum -y install telnet-server //安装telnet客户端 yum -y install telnet.*
- day17 9.关闭资源与异常处理
Java程序跟任何外部设备进行连接之后,都要把连接断开,把资源释放掉.Connection是一个重量级资源,Connecton占内存,Connection的获取是比较消耗资源和内存的.finally是 ...
- PCL—点云分割(超体聚类) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5013968.html 1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是 ...