luogu2522[HAOI2011]Problem b

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

根据题意,先二维容斥一下,转化为求

\(\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\)

然后转化为对n/k和m/k

\(\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=1]\)

这个可以直接mobius一下

\(\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i,d|j}\mu(d)\)

\(\sum_{d=1}^n\mu(d)\lfloor\frac n d\rfloor\lfloor\frac m d\rfloor\)

\(\mu\)直接线性筛,前缀和

然后就没了

代码很简单 可以算是mobius反演最简单的一道题了吧

tmd输入变量名搞错了,直接没出样例,后来把b和c位置换一下就行了。。。

#include <cstdio>
#include <functional>
using namespace std; bool vis[100010];
int prime[100010], tot;
int mu[100010];
const int fuck = 100000; int query(int x, int y)
{
int res = 0;
if (x > y) swap(x, y);
for (int i = 1, j; i <= x; i = j + 1)
{
j = min(x / (x / i), y / (y / i));
res += (mu[j] - mu[i - 1]) * (x / i) * (y / i);
}
return res;
} signed main()
{
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
break;
mu[i * prime[j]] = -mu[i];
}
mu[i] += mu[i - 1];
}
int t;
scanf("%d", &t);
while (t --> 0)
{
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &c, &b, &d, &k), a--, b--;
printf("%d\n", query(c / k, d / k) + query(a / k, b / k) - query(c / k, b / k) - query(a / k, d / k));
}
return 0;
}

luogu2522 [HAOI2011]Problem b的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  3. HAOI2011 problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1047  Solved: 434[Submit][ ...

  4. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  5. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  6. 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4164  Solved: 1888[Submit] ...

  7. BZOJ 2302: [HAOI2011]Problem c( dp )

    dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...

  8. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

  9. 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6015  Solved: 2741[Submit] ...

随机推荐

  1. navicat for mysql ,mysql版本是8.0的版本,连接数据库报错1251,解决办法。

    我的mysql版本是8.0的版本,因为毕竟新的mysql采用新的保密方式,所以就的似乎不能用,改密码方式: 用管理员身份打开cmd mysql -uroot -p(输入密码)            进 ...

  2. 2016.1.1 VS中宏的使用技巧点滴

    Dim selection As TextSelection = DTE.ActiveDocument.Selection'定义 TextSelection 对象 selection.StartOfL ...

  3. 【Android 多媒体应用】使用MediaCodec解码使用SurfaceView显示视频

    1.MainActivity.java import android.app.Activity; import android.os.Bundle; import android.os.Environ ...

  4. linux 信号量之SIGNAL 0<转>

    我们可以使用kill -l查看所有的信号量解释,但是没有看到SIGNAL 0的解释. [root@testdb~]# kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) ...

  5. 重命名File

    File completeFile = new File(mFilePath + mFileName); if (completeFile.exists()) { File fileWithSuffi ...

  6. springmvc 处理器方法返回的是modelandview 重定向到页面

  7. c++对象模型探索(一)

    粗略阅读了<深度探索c++对象模型>一书后,对c++对象底层的内存布局有了一些了解,但同时,也产生了一些疑惑: 1.将子类指针用dynamic_cast转成父类指针之后,其虚表指针会相应变 ...

  8. day18-事务与连接池 3.jdbc中事务操作介绍

    那么我们都是通过程序操作数据库.所以要了解jdbc下怎样对事务操作.jdbc如何操作事务? 自动事务false那就不开了呗相当于开启事务. package cn.itcast.transaction; ...

  9. CSS中cursor的pointer 与 hand(转)

    CSS中cursor的pointer 与 hand 转载 2015年12月25日 16:18:36 标签: cursorpointer / cursorhand 1781 cursor:hand 与 ...

  10. p1627 [CQOI2009]中位数

    传送门 分析 https://www.luogu.org/blog/user43145/solution-p1627 代码 #include<iostream> #include<c ...