1202 子序列个数
题目来源: 福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的**不同子序列**的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input 第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000) Output 输出a的不同子序列的数量Mod 10^9 + 7。 Input示例 4
1
2
3
2 Output示例 13

dp[i]为前i个字符中子序列的个数

当a[i]没有出现过的时候,dp[i] = dp[i-1]*2 + 1,因为相当于在dp[i-1]个子序列中新增一个a[i],再加上它本身。

当a[i]出现过的时候就要去重,减去以a[i]以前出现的位置的前一位子序列的个数=dp[vis[ a[i] ] - 1],因为a[i]为结尾重复了。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e5+5;
const int mod = 1000000007; int a[N];
ll dp[N]; //dp[i]为前i个字符中子序列的个数
int vis[N];
int main()
{
int n;
while(cin >> n){
for(int i=1;i<=n;i++){
cin >> a[i];
}
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
dp[1]=1;
vis[a[1]]=1;
for(int i=2;i<=n;i++){
if(vis[a[i]]==0){
dp[i] = (dp[i-1]*2 + 1)%mod;
}else{
dp[i] = (dp[i-1]*2 - dp[ vis[a[i]] - 1 ] + mod) % mod;
}
vis[a[i]]=i; //标记a[i]出现的位置
}
cout<<dp[n]<<endl;
}
return 0;
}
// 1 2 3 2
//13

51nod 1202 不同子序列个数 [计数DP]的更多相关文章

  1. 51nod 1202 不同子序列个数(计数DP)

    1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40      子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a ...

  2. hdu4632 Palindrome subsequence 回文子序列个数 区间dp

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  3. FZU 2129 子序列个数(DP)题解

    题意:求子序列种数 思路:dp[i]代表到i的所有种数,把当前i放到末尾,那么转移方程dp[i] = dp[i - 1] + dp[i -1],但是可能存在重复,比如1 2 3 2,在第2位置的时候出 ...

  4. 51nod 1202 子序列个数

    1202 子序列个数  题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 子序列的定义:对于一个序列a=a[1],a[2] ...

  5. 1202 子序列个数(DP)

    1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 子序列的定义:对于一个序列a=a[1],a[2],......a[ ...

  6. [HAOI2010]最长公共子序列(LCS+dp计数)

    字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...

  7. 51nod 1202 线性dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202 1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 ...

  8. FZU 2129 子序列个数 (递推dp)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...

  9. 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!

    51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...

随机推荐

  1. Json 转换 1 转成 true 0 转成false

  2. HTML简易学习笔记

    文字版地址 https://github.com/songzhenhua/github/blob/master/HTML简易学习笔记.txt

  3. Python学习-django-ModelForm组件

    ModelForm a. class Meta: model, # 对应Model的 fields=None, # 字段 exclude=None, # 排除字段 labels=None, # 提示信 ...

  4. win10激活(转)

    批处理命令激活方法,此方法和激活码可激活 180天 先来说下使用激活码使用方法: 1.同时按下Win键+X,然后选择命令提示符(管理员) 2.在命令提示符中依次输入: slmgr.vbs /upk ( ...

  5. Action参数和View、Json、重定向

    一.Action 1.Action参数: 普通参数.Model类.FormCollection (1).普通参数 Index(string name,int age)   框架会自动把用户请求的Que ...

  6. 孤荷凌寒自学python第五十三天使用python写入和修改Firebase数据库中记录

     孤荷凌寒自学python第五十三天使用python写入和修改Firebase数据库中记录 (完整学习过程屏幕记录视频地址在文末) 今天继续研究Firebase数据库,利用google免费提供的这个数 ...

  7. Android数据储存之SharedPreferences总结

    写在前面:本文是我参考李刚老师的<疯狂Android讲义>以及API所写的读书笔记,在此表示感谢,本人小白,如有错误敬请指教. SharedPreferences的使用背景: 有时候,应用 ...

  8. 关于Yarn源码那些事-前传之ResourceManager篇(一)初始化

    在关于Yarn那些事的博客里,介绍的主要是针对任务提交的一个动态流程说明,而其中牵涉到的一些细节问题,必须通过Resourcemanager的启动和NodeManager的启动,来更好的说明. 而本系 ...

  9. 【马克-to-win】学习笔记—— 第五章 异常Exception

    第五章 异常Exception [学习笔记] [参考:JDK中文(类 Exception)] java.lang.Object java.lang.Throwable java.lang.Except ...

  10. 基于WEB的机器人远程控制

    1.前进后退左转右转控制: 2.视频传输,为了保证视频的流畅性,选择相机支持格式中图像最小,帧率最低的:并对视频进行处理,将15帧处理成5帧,从而降低传输数据量: 3.地图显示及导航控制: 地图在三维 ...