51nod 1202 不同子序列个数 [计数DP]
1202 子序列个数
题目来源: 福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的**不同子序列**的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4
1
2
3
2
Output示例
13
dp[i]为前i个字符中子序列的个数
当a[i]没有出现过的时候,dp[i] = dp[i-1]*2 + 1,因为相当于在dp[i-1]个子序列中新增一个a[i],再加上它本身。
当a[i]出现过的时候就要去重,减去以a[i]以前出现的位置的前一位子序列的个数=dp[vis[ a[i] ] - 1],因为a[i]为结尾重复了。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e5+5;
const int mod = 1000000007;
int a[N];
ll dp[N]; //dp[i]为前i个字符中子序列的个数
int vis[N];
int main()
{
int n;
while(cin >> n){
for(int i=1;i<=n;i++){
cin >> a[i];
}
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
dp[1]=1;
vis[a[1]]=1;
for(int i=2;i<=n;i++){
if(vis[a[i]]==0){
dp[i] = (dp[i-1]*2 + 1)%mod;
}else{
dp[i] = (dp[i-1]*2 - dp[ vis[a[i]] - 1 ] + mod) % mod;
}
vis[a[i]]=i; //标记a[i]出现的位置
}
cout<<dp[n]<<endl;
}
return 0;
}
// 1 2 3 2
//13
51nod 1202 不同子序列个数 [计数DP]的更多相关文章
- 51nod 1202 不同子序列个数(计数DP)
1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a ...
- hdu4632 Palindrome subsequence 回文子序列个数 区间dp
Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/ ...
- FZU 2129 子序列个数(DP)题解
题意:求子序列种数 思路:dp[i]代表到i的所有种数,把当前i放到末尾,那么转移方程dp[i] = dp[i - 1] + dp[i -1],但是可能存在重复,比如1 2 3 2,在第2位置的时候出 ...
- 51nod 1202 子序列个数
1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 子序列的定义:对于一个序列a=a[1],a[2] ...
- 1202 子序列个数(DP)
1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 子序列的定义:对于一个序列a=a[1],a[2],......a[ ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 51nod 1202 线性dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202 1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 ...
- FZU 2129 子序列个数 (递推dp)
题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...
- 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...
随机推荐
- pip 代理设置,坑爹的代理继续
Linux ubuntu 3.2.0-23-generic-pae #36-Ubuntu SMP Tue Apr 10 22:19:09 UTC 2012 i686 i686 i386 GNU/Lin ...
- Python全栈工程师(每周总结:1)
ParisGabriel python今年9月份将被国家纳入计算机二级资格证 先学就是鼻祖 几年后你就是大牛 Python人工智能从入门到精通 week summer: ...
- 孤荷凌寒自学python第三十一天python的datetime.timedelta模块
孤荷凌寒自学python第三十一天python的datetime.timedelta模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) datetime.timedelta模块是一个表示 ...
- sshd_config_for_centos
# $OpenBSD: sshd_config,v // :: djm Exp $ # This is the sshd server system-wide configuration file. ...
- Megacli查看Dell服务器Raid状态
通常我们使用的DELL/HP/IBM三家的机架式PC级服务器阵列卡是从LSI的卡OEM出来的,DELL和IBM两家的阵列卡原生程度较高,没有做太多封装,可以用原厂提供的阵列卡管理工具进行监控:而HP的 ...
- 在python中如何比较两个float类型的数据是否相等
奇怪的现象 前几天跟同事聊起来,在计算机内部float比较是很坑爹的事情.比方说,0.1+0.2得到的结果竟然不是0.3? >>> 0.1+0.2 0.300000000000000 ...
- [转]Docker学习笔记之一,搭建一个JAVA Tomcat运行环境
本文转自:http://www.blogjava.net/yongboy/archive/2013/12/12/407498.html 前言 Docker旨在提供一种应用程序的自动化部署解决方案,在 ...
- J2EE的十三种技术——JNDI
背景: 上一篇博客中介绍了J2EE的十三种技术之一--JDBC,主要用于提供了统一访问多种数据库的方式.这篇文章我们继续介绍J2EE的技术--JNDI. JNDI: Java Naming and D ...
- ThreadPoolExecutor源码解析
LZ目前正在做一个批量生成报表的系统,需要定时批量生成多张报表,便考虑使用线程池来完成.JDK自带的Executors工具类只提供创建固定线程和可伸展但无上限的两个静态方法,并不能满足LZ想自定制线程 ...
- JS正则表达式 简单应用
知识点: 先生成一个正则规则的对象,使用test()对传入的字符串进行验证,返回布尔类型 代码: <!doctype html><html><head> <m ...