pandas.Series

class pandas.Series(data=Noneindex=Nonedtype=Nonename=Nonecopy=Falsefastpath=False)

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN)

Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.

Parameters :

data : array-like, dict, or scalar value

Contains data stored in Series

index : array-like or Index (1d)

Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.

dtype : numpy.dtype or None

If None, dtype will be inferred

copy : boolean, default False

Copy input data

Series 类似数组,但是它有标签(label) 或者索引(index).

1. 从最简单的series开始看。

from pandas import Series, DataFrame
import pandas as pd
ser1 = Series([1,2,3,4])
print(ser1)
#0 1
#1 2
#2 3
#3 4
#dtype: int64

此时因为没有设置index,所以用默认

2. 加上索引

ser2 = Series(range(4),index=['a','b','c','d'])
print(ser2)
#a 0
#b 1
#c 2
#d 3
#dtype: int64

3. dictionnary 作为输入

dict1 = {'ohio':35000,'Texas':71000,'Oregon':1600,'Utah':500}
ser3 = Series(dict1)
#Oregon 1600
#Texas 71000
#Utah 500
#ohio 35000
#dtype: int64

key:默认设置为index

dict1 = {'ohio':35000,'Texas':71000,'Oregon':1600,'Utah':500}
ser3 = Series(dict1)
#Oregon 1600
#Texas 71000
#Utah 500
#ohio 35000
#dtype: int64
print(ser3)
states = ['California', 'Ohio', 'Oregon', 'Texas']
ser4 = Series(dict1,index = states)
print(ser4)
#California NaN
#Ohio NaN
#Oregon 1600.0
#Texas 71000.0
#dtype: float64

用了dictionary时候,也是可以特定的制定index的,当没有map到value的时候,给NaN.

print(pd.isnull(ser4))
#California True
#Ohio True
#Oregon False
#Texas False
#dtype: bool

函数isnull判断是否为null

print(pd.isnull(ser4))
#California True
#Ohio True
#Oregon False
#Texas False
#dtype: bool

函数notnull判断是否为非null

print(pd.notnull(ser4))
#California False
#Ohio False
#Oregon True
#Texas True
#dtype: bool

4. 访问元素和索引用法

print (ser2['a']) #
#print (ser2['a','c']) error
print (ser2[['a','c']])
#a 0
#c 2
#dtype: int64
print(ser2.values) #[0 1 2 3]
print(ser2.index) #Index(['a', 'b', 'c', 'd'], dtype='object')

5. 运算, pandas的series保留Numpy的数组操作

print(ser2[ser2>2])
#d 3
#dtype: int64
print(ser2*2)
#a 0
#b 2
#c 4
#d 6
#dtype: int64
print(np.exp(ser2))
#a 1.000000
#b 2.718282
#c 7.389056
#d 20.085537
#dtype: float64

6. series 的自动匹配,这个有点类似sql中的full join,会基于索引键链接,没有的设置为null

print (ser3+ser4)
#California NaN
#Ohio NaN
#Oregon 3200.0
#Texas 142000.0
#Utah NaN
#ohio NaN
#dtype: float64

7. series对象和索引都有一个name属性

ser4.index.name = 'state'
ser4.name = 'population count'
print(ser4)
#state
#California NaN
#Ohio NaN
#Oregon 1600.0
#Texas 71000.0
#Name: population count, dtype: float64

8.预览数据

print(ser4.head(2))
print(ser4.tail(2))
#state
#California NaN
#Ohio NaN
#Name: population count, dtype: float64
#state
#Oregon 1600.0
#Texas 71000.0
#Name: population count, dtype: float64

Python Pandas -- Series的更多相关文章

  1. python. pandas(series,dataframe,index) method test

    python. pandas(series,dataframe,index,reindex,csv file read and write) method test import pandas as ...

  2. python pandas.Series&&DataFrame&& set_index&reset_index

    参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...

  3. python pandas ---Series,DataFrame 创建方法,操作运算操作(赋值,sort,get,del,pop,insert,+,-,*,/)

    pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from panda ...

  4. Python pandas 0.19.1 Intro to Data Structures 数据结构介绍 文档翻译

    官方文档链接http://pandas.pydata.org/pandas-docs/stable/dsintro.html 数据结构介绍 我们将以一个快速的.非全面的pandas的基础数据结构概述来 ...

  5. Python pandas学习总结

    本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...

  6. pandas.Series

    1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...

  7. Python pandas快速入门

    Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...

  8. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

  9. 【跟着stackoverflow学Pandas】 - Adding new column to existing DataFrame in Python pandas - Pandas 添加列

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

随机推荐

  1. C++获取电脑上连接的多个摄像头名称与编号

    #include<iostream>#include "strmif.h"#include <initguid.h>#include<vector&g ...

  2. C++中的纯虚函数和虚函数的作用

    1. 虚函数和纯虚函数可以定义在同一个类(class)中,含有纯虚函数的类被称为抽象类(abstract class),而只含有虚函数的类(class)不能被称为抽象类(abstract class) ...

  3. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  4. 10.model/view实例(1)

    1.如图显示一个2x3的表格: 思考: 1.QTableView显示这个表 2.QAbstractTableModel作为模型类. 3.文档中找到subclass的描述 When subclassin ...

  5. Django框架 之 模板语言

    Django框架 之 模板语言 浏览目录 标签 过滤器 一.标签 Tags 1.普通变量 普通变量用{{ }} 变量名由数字.字母.下划线组成 点.在模板语言中用来获取对象相应的属性值 示例: 1 2 ...

  6. Python程序设计1——基础知识

    1 Python脚本设计简介 1.1 输出"Hello World" 和一般的语言一样,运行python程序有两种方式,一种是GUI交互式命令,一种是通过脚本文件,前者适合小型简单 ...

  7. 数据结构 i_love(我喜欢)

    数据结构 i_love(我喜欢) 问题描述 集训队的学长们都怪怪的,如果 A 学长喜欢 B 学长, A 就会把自己的名字改成«I_love_<B 学长的名字>».但是奇怪的学长们很容易移情 ...

  8. 关于集合的小demo

    /*1.分析以下需求,并用代码实现: (1)有如下代码: (2)定义方法统计集合中指定元素出现的次数,如"e" 3,"f" 2,"g" 4* ...

  9. java全栈day34---表单CSS

    今日内容介绍 1 使用html的表单标签编写“注册页面” 2 使用DIV和CSS重写网站首页 所有的html标签中,表单标签是最重要的.在实际开发中,最经典的实例就是用户注册,覆盖 了表单标签的所有的 ...

  10. 《Head First Servlets & JSP》-10-定制标记开发

    标记文件:很想include,但是比include更好 建立和使用标记文件的最简方法 取一个被包含文件(如Header.jsp),把它重命名为带有一个.tag扩展名(Header.tag): 把标记文 ...