今天是钟皓曦老师的讲授~~

总结了一下今天的内容:

数论!!!

1.整除性

2.质数

定义:

性质: 

3.整数分解定理——算数基本定理

证明:

存在性:

设N是最小不满足唯一分解定理的整数

(1)  若N为质数,则N=N¹,所以N不存在;

(2)  若N为合数,则N=P*(N/P),因为N/P也是不满足定理的整数

所以与N是不满足定理的最小整除相矛盾

所以N不存在

唯一性:

4.素数的判定

(注:s.t.是“使得”的意思)

根据钟神长者的小学经验:取2,3,5,7,13,29,37,89这8个素数在int范围内是100%准的

时间复杂度为O(klogn)

怎么代码实现呢???

首先我们要先求出d和r,然后快速幂求出a^d和a^(d*2^i)

a^(d*2^i)当然有别的好方法求啦,看下面:

a^(d*2^(i-1)*2)=(a^(d*2^(i-1)))^2=((a^(d*2^(i-2)))^2)^2……最后搞下去就变成了a^(d*2^i)

所以我们只要把快速幂后的a^(d*2^i)再进行快速幂就行啦

程序代码:

int gg[8] = {2,3,5,7,13,29,37,89};            //8个好用的素数

bool miller_rabin(int a,int n)                   
{
int d=n-1,r=0;
while (d%2==0)
d/=2,r++;                                                //求d和r
int x = kuaisumi(a,d,n);                          //快速幂a^d
if (x==1) return true;                              //判断a^d%n是否为1,若是,则可能是质数;若否,进行下一层判断
for (int i=0;i<r;i++)
{
if (x==n-1) return true;
x=(long long)x*x%n;                             //将a^d进行快速幂来判断a^(d*2^i)%n是否为-1也就是n-1;
}
return false;
}

bool is_prime(int n)
{
if (n<=1) return false;
for (int a=0;a<8;a++)
if (n==gg[a]) return true;                               //判断n是否为列举的素数中的任何一个,若是则直接判为素数
for (int a=0;a<8;a++)
if (!miller_rabin(gg[a],n)) return false;           //进行miller_rabin素数检查
return true;
}

int kuaisumi(int a,int d,int n) {                  //快速幂函数

int ans=1;

while(b)

{

if(b&1)  ans=ans*a%n;

a=a*a%n;

b>>=1;

}

5.裴蜀定理

设d=gcd(a,b);

6.扩展欧几里得

程序代码:

第10行和第4行都是返回的最大公约数,而x,y的值都地址返回了

7.中国剩余定理

另外我们还可以用大数翻倍法做

8.逆元

定义:

我们都知道欧拉定理:

怎么证呢???

(1)  

那么都<n且都与n互质

所以对于mod n是不同余的

那么同乘a也是不同余的

那么这其中的任何

这样我们得到了

既然这其中的任何,那么

这样我们得到了

每一个乘a后mod n的余数不变,那么我们可以说

这样我们就得到了

由此我们就可以得到:

9.Miller_Rabin 二次侦探定理

说明一下:     x²≡1 (mod p)

x²-1≡0 (mod p)

(x+1)(x-1)≡0 (mod p)

x≡1或-1

a^(d*2^r)-1≡0 (mod p)

(a^(d*2^(r-1))-1)(a^(d*2^(r-1))+1)≡0 (mod p)

a^(d*2^(r-1))≡1或a^(d*2^(r-1))≡-1

若a^(d*2^(r-1))≡-1,则满足Miller_Rabin的第二个式子,直接判定n为质数

否则a^(d*2^(r-1))≡1

a^(d*2^(r-1))-1≡0 (mod p)

(a^(d*2^(r-2))+1)(a^(d*2^(r-2))-1)≡0 (mod p)

a^(d*2^(r-2))≡1或a^(d*2^(r-2))≡-1

若a^(d*2^(r-2))≡-1,则满足Miller_Rabin的第二个式子,直接判定n为质数

否则a^(d*2^(r-2))≡1

……

10.线性求逆元

程序代码:

int inv[i]=1;

for(int i=2;i<=10;i++)

{

inv[i]=(p-(p/i))*inv[p%i]%p;

}

11.BSGS算法

先来引入积性函数和完全积性函数的概念:

以下是几个常见的积性函数:

可能大家对莫比乌斯函数μ(n)不大熟悉,我来给大家介绍一下:

我们来了解一下莫比乌斯函数的性质

答案很简单:当n=1时,答案为1;当n不为1时,答案为0;

莫比乌斯反演

F(n)和f(n)为算术函数,若他们满足

则有

清明培训 清北学堂 DAY2的更多相关文章

  1. 清明培训 清北学堂 DAY1

    今天是李昊老师的讲授~~ 总结了一下今天的内容: 1.高精度算法 (1)   高精度加法 思路:模拟竖式运算 注意:进位 优化:压位 程序代码: #include<iostream>#in ...

  2. 五一培训 清北学堂 DAY2

    今天还是冯哲老师的讲授~~ 今日内容:简单数据结构(没看出来简单qaq) 1.搜索二叉树 前置技能 一道入门题在初学OI的时候,总会遇到这么一道题.给出N次操作,每次加入一个数,或者询问当前所有数的最 ...

  3. 五一培训 清北学堂 DAY4

    今天上午是钟皓曦老师的讲授,下午是吴耀轩老师出的题给我们NOIP模拟考了一下下(悲催暴零) 今天的内容——数论 话说我们可能真的是交了冤枉钱了,和上次清明培训的时候的课件及内容一样(哭. 整除性 质数 ...

  4. 五一培训 清北学堂 DAY1

    今天是冯哲老师的讲授~ 1.枚举 枚举也称作穷举,指的是从问题所有可能的解的集合中一一枚举各元素. 用题目中给定的检验条件判定哪些是无用的,哪些是有用的.能使命题成立的即为其解. 例一一棵苹果树上有n ...

  5. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  6. 五一培训 清北学堂 DAY3

    今天是钟皓曦老师的讲授~ 今天的内容:动态规划 1.动态规划 动态规划很难总结出一套规律 例子:斐波那契数列  0,1,1,2,3,5,8,…… F[0]=0 F[1]=1 F[[n]=f[n-1]+ ...

  7. 五一培训 清北学堂 DAY5

    今天是吴耀轩老师的讲解- 今天的主要内容:图论 如何学好图论? 学好图论的基础:必须意识到图论! 图 邻接矩阵存图: 其缺点是显而易见的:1. 空间复杂度O(n^2)不能接受:2.有重边的时候很麻烦: ...

  8. 7月清北学堂培训 Day 3

    今天是丁明朔老师的讲授~ 数据结构 绪论 下面是天天见的: 栈,队列: 堆: 并查集: 树状数组: 线段树: 平衡树: 下面是不常见的: 主席树: 树链剖分: 树套树: 下面是清北学堂课程表里的: S ...

  9. 清北学堂2017NOIP冬令营入学测试P4745 B’s problem(b)

    清北学堂2017NOIP冬令营入学测试 P4745 B's problem(b) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 题目描 ...

随机推荐

  1. 在Windows 10上利用seafile搭建个人云服务

    参考seafile官方文档 安装Python 2.7.11 32位版 下载地址:https://www.python.org/downloads/release/python-2711/ 选择 32位 ...

  2. 获取spring security用户相关信息

    在JSP中获得 使用spring security的标签库 在页面中引入标签 <%@ taglib prefix="sec" uri="http://www.spr ...

  3. SQLServer之修改标量值函数

    修改标量值函数注意事项 更改先前通过执行 CREATE FUNCTION 语句创建的现有 Transact-SQL 或 CLR 函数,但不更改权限,也不影响任何相关的函数.存储过程或触发器. 不能用 ...

  4. 【公众号系列】浅谈SAP项目管理的技能

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[[公众号系列]浅谈SAP项目管理的技能   写 ...

  5. 【原】Java学习笔记017 - 面向对象

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 继承关系中的pri ...

  6. 在Windows 10中截取截图的6种方式 简介

    在Windows 10中截取截图的6种方式 简介 截图对于不同的目的很重要.它可以用于捕获笔记本电脑上的任何内容的截图.所以,如果你使用Windows 10,你可能不知道如何截图,因为它是比较新的.因 ...

  7. A Deep Learning-Based System for Vulnerability Detection(二)

    接着上一篇,这篇研究实验和结果. A.用于评估漏洞检测系统的指标 TP:为正确检测到漏洞的样本数量 FP:为检测到虚假漏洞样本的数量(误报) FN:为未检真实漏洞的样本数量(漏报) TN:未检测到漏洞 ...

  8. tomcat+struts配置总结

    忙活了好些天Tomcat和Struts配置,踩了好多坑 此文仅供参考,只是笔者自身的记录. 配置在这里就不赘述了,贴几个链接给你们参考把! 一.配置简述 jdk配置 https://blog.csdn ...

  9. 【spring源码分析】准备工作

    前言:之前写过两篇基于xml形式的IOC容器初始化过程,现在看来写的比较烂,最近又继续阅读spring源码,对IOC容器的初始化有了一些新的认识,因此决定记录下来,加深自己对spring的印象与理解. ...

  10. golang web实战之一(beego,mvc postgresql)

    想写个小网站,听说MVC过时了,流行MVVM,但是看了一下gin+vue+axios方式,发现还有一堆知识点要掌握,尤其是不喜欢nodejs和javascript方式的写法.算了,还是用beego来写 ...