BZOJ4671异或图
题目描述
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
ll jie[],be[],n,G,x[],ans;
char s[];
int g[][][];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
void solve(int now,int cnt){
if(now>n){
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)if(be[i]!=be[j]){
ll tmp=;
for(int k=;k<=G;++k)tmp|=(1ll*g[k][i][j]<<k-);
for(int k=G-;k>=;--k)if(tmp&(1ll<<k)){
if(!x[k]){x[k]=tmp;break;}
tmp^=x[k];
}
}
int num=;
for(int i=;i<G;++i)if(x[i])num++;
ans+=((cnt&)?:-)*(1ll<<(G-num))*jie[cnt-];
for(int i=;i<G;++i)x[i]=;
}
else{
for(int j=;j<=cnt+;++j){be[now]=j;solve(now+,max(cnt,j));}
}
}
int main(){
G=rd();
for(int i=;i<=G;++i){
scanf("%s",s+);
n=strlen(s+);
n=(+sqrt(+*n))/;int now=;
for(int j=;j<=n;++j)for(int k=j+;k<=n;++k){g[i][j][k]=s[now]-'';now++;}
}
jie[]=;
for(int i=;i<=n;++i)jie[i]=jie[i-]*i;
solve(,);
cout<<ans;
return ;
}
BZOJ4671异或图的更多相关文章
- bzoj4671: 异或图——斯特林反演
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...
- bzoj4671: 异或图
bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...
- bzoj4671 异或图(斯特林反演,线性基)
bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...
- BZOJ4671 异或图(容斥+线性基)
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...
- BZOJ4671 异或图 斯特林反演+线性基
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...
- 【BZOJ4671】异或图(斯特林反演)
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...
- 【XSY2701】异或图 线性基 容斥原理
题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
随机推荐
- 搭建MHA时 yum 安装perl模块提示 baseurl 错误
今天在搭建MySQL MHA 安装MHA node所需的perl模块(DBD:mysql)时遇到了一个小的错误,如果思路不对的话,还是产生不少麻烦. 现梳理记录下来. 问题现象 执行的命令 yum ...
- 一道CTF题引发的思考——SSI注入
题目地址:http://210.32.4.22/index.php 一开始我一直考虑的用<!--#include file="文件"-->的格式进行读取文件,但是一直不 ...
- SQLServer之创建AFETER DELETE触发器
DML AFTER DELETE触发器创建原理 触发器触发时,系统自动在内存中创建deleted表或inserted表,inserted表临时保存了插入或更新后的记录行,deleted表临时保存了删除 ...
- 【Python 15】分形树绘制3.0(递归函数)
1.案例描述 将递归函数与循环函数结合绘制2.0的图形 2.案例分析 3.上机实验 """ 作者:梁斌 功能:五角星的绘制 版本:3.0 日期:03/08/2017 新增 ...
- day 1总结-python基础
第一天的复习 目录:1.编程语言的区分 2.python的优缺点 3.python环境的搭建,版本之间的大致区别 4.代码的注释规则 5.变量 6.常量 7.基本程序交互 8.基础数据类型 9.基础循 ...
- docker面试整理
为什么要使用docker https://www.cnblogs.com/AshOfTime/p/10755479.html docker的使用场景 docker和虚拟机比较的优势 https: ...
- [LeetCode] 9. 回文数
题目链接:https://leetcode-cn.com/problems/palindrome-number/ 题目描述: 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都 ...
- cumprod、prod函数
1.prod函数 prod函数用于求矩阵元素的积,其调用格式如下. (1)B=prod(A):若A为向量,则返回所有元素的积:若A为矩阵,则返回各列所有元素的积. (2)B=prod(A,dim):返 ...
- jenkins编译打包nodejs
第一步 安装nodejs插件 第二步 在全局配置管理里面添加 nodejs配置 第三步 新建任务,从git上面拉取代码 cd /opt/tomcat7/bin/workspace/confdev #进 ...
- Raft与MongoDB复制集协议比较
在一文搞懂raft算法一文中,从raft论文出发,详细介绍了raft的工作流程以及对特殊情况的处理.但算法.协议这种偏抽象的东西,仅仅看论文还是比较难以掌握的,需要看看在工业界的具体实现.本文关注Mo ...