1.utils.py

import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
import sys
from scipy.sparse.linalg import norm as sparsenorm
from scipy.linalg import qr
import math def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool) def load_data(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist()
idx_train = range(len(ally)-500)
idx_val = range(len(ally)-500, len(ally)) train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def load_data_original(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended # features (2708,1433) labels (2708,7)
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500) train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx) return sparse_mx def nontuple_preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return sparse_to_tuple(features) def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def nontuple_preprocess_adj(adj):
""" 返回对称归一化的邻接矩阵 type:csr """
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
return adj_normalized.tocsr() def column_prop(adj):
""" detail reference:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm
等价于array形式:
arr = np.array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
column_norm = np.linalg.norm(arr, axis=0) 对每一列求二范数
print column_norm
>>> [ 3.74165739 8.77496439 13.92838828] => [sqrt(1^2+2^2+3^2) sqrt(4^2+5^2+6^2) sqrt(7^2+8^2+9^2)]
norm_sum = sum(column_norm) # 归一化
print(column_norm/norm_sum)
>>> [0.14148822 0.33181929 0.52669249]
"""
column_norm = sparsenorm(adj, axis=0)
# column_norm = pow(sparsenorm(adj, axis=0),2)
norm_sum = sum(column_norm)
return column_norm/norm_sum def mix_prop(adj, features, sparseinputs=False):
adj_column_norm = sparsenorm(adj, axis=0)
if sparseinputs:
features_row_norm = sparsenorm(features, axis=1)
else:
features_row_norm = np.linalg.norm(features, axis=1)
mix_norm = adj_column_norm*features_row_norm norm_sum = sum(mix_norm)
return mix_norm / norm_sum def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
return sparse_to_tuple(adj_normalized) def dense_lanczos(A, K):
q = np.random.randn(A.shape[0], )
Q, sigma = lanczos(A, K, q)
A2 = np.dot(Q[:, :K], np.dot(sigma[:K, :K], Q[:, :K].T))
return sp.csr_matrix(A2) def sparse_lanczos(A, k):
q = sp.random(A.shape[0], 1)
n = A.shape[0]
Q = sp.lil_matrix(np.zeros((n, k+1)))
A = sp.lil_matrix(A) Q[:, 0] = q/sparsenorm(q) alpha = 0
beta = 0 for i in range(k):
if i == 0:
q = A*Q[:, i]
else:
q = A*Q[:, i] - beta*Q[:, i-1]
alpha = q.T*Q[:, i]
q = q - Q[:, i]*alpha
q = q - Q[:, :i]*Q[:, :i].T*q # full reorthogonalization
beta = sparsenorm(q)
Q[:, i+1] = q/beta
print(i) Q = Q[:, :k] Sigma = Q.T*A*Q
A2 = Q[:, :k]*Sigma[:k, :k]*Q[:, :k].T
return A2
# return Q, Sigma def dense_RandomSVD(A, K):
G = np.random.randn(A.shape[0], K)
B = np.dot(A, G)
Q, R = qr(B, mode='economic')
M = np.dot(Q, np.dot(Q.T, A))
return sp.csr_matrix(M) def construct_feed_dict(features, support, labels, labels_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['labels_mask']: labels_mask})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['support'][i]: support[i]
for i in range(len(support))})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
return feed_dict def chebyshev_polynomials(adj, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj)
laplacian = sp.eye(adj.shape[0]) - adj_normalized
largest_eigval, _ = eigsh(laplacian, 1, which='LM')
scaled_laplacian = (
2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list()
t_k.append(sp.eye(adj.shape[0]))
t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
s_lap = sp.csr_matrix(scaled_lap, copy=True)
return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1):
t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def view_bar(message, num, total, loss, train_acc, val_acc, test_acc, times):
rate = num / total
rate_num = int(rate * 40)
rate_nums = math.ceil(rate * 100)
r = '\r%s:[%s%s]%d%%\t%d/%d - loss:%.3f - train_acc:%.3f - val_acc:%.3f - test_acc:%.3f - time:%.2fs' % (message,
"=" * rate_num,
" " *
(40 - rate_num),
rate_nums,
num,
total,
loss,
train_acc,
val_acc,
test_acc,
times)
sys.stdout.write(r)
sys.stdout.flush()

2.layers.py

import tensorflow as tf
from model.inits import *
from model.utils import * def sparse_dropout(x, keep_prob, noise_shape):
"""Dropout for sparse tensors."""
random_tensor = keep_prob
random_tensor += tf.random.uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse.retain(x, dropout_mask)
return pre_out * (1./keep_prob) def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
if sparse:
res = tf.sparse.sparse_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res class Layer(object):
def __init__(self, **kwargs):
self.vars = {} def _call(self, params):
"""implement the layer operation """
return params def __call__(self, params):
outputs = self._call(params)
return outputs class Dense(Layer):
def __init__(self, name, input_dim, output_dim, dropout=0.0,
sparse_inputs=False, act=tf.nn.relu, bias=False, **kwargs):
super(Dense, self).__init__(**kwargs)
self.name = name
self.dropout = dropout
self.act = act
self.out_dim = output_dim # bool
self.bias = bias
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
# define params
self.vars['weight'] = glorot([input_dim, output_dim],
name=self.name+'weight')
if self.bias:
self.vars['bias'] = zeros([output_dim],
name=self.name+'bias') def _call(self, params):
"""params: features support """
x = params['features'] # dropout x
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout,
params['num_features_nonzero'])
else:
x = tf.nn.dropout(x, 1-self.dropout) output = dot(x, self.vars['weight'], sparse=self.sparse_inputs) if self.bias:
output += self.vars['bias']
return self.act(output) class GraphConvolution(Layer):
def __init__(self, name, input_dim, output_dim, dropout=0.0,
sparse_inputs=False, act=tf.nn.relu, bias=False, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.name = name
self.dropout = dropout
self.act = act
self.out_dim = output_dim # bool
self.bias = bias
self.sparse_inputs = sparse_inputs # params['features'] sparse or not # define params
self.vars['weight'] = glorot([input_dim, output_dim],
name=self.name+'weight')
if self.bias:
self.vars['bias'] = zeros([output_dim],
name=self.name+'bias') def _call(self, params):
x = params['features']
support = params['support']
# dropout x
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout,
params['num_features_nonzero'])
else:
x = tf.nn.dropout(x, 1-self.dropout) # x is sparse
pre_sup = dot(x, self.vars['weight'],
sparse=self.sparse_inputs) # x.dot(w) # support is sparse
output = dot(support, pre_sup, sparse=True) # Axw if self.bias:
output += self.vars['bias']
return self.act(output)

3.models.py

from model.layers import *
from model.metrics import *
import numpy as np class Model(object):
def __init__(self):
self.vars = []
self.layers = [] def forward(self):
raise NotImplementedError def _update(self):
raise NotImplementedError def _loss(self):
raise NotImplementedError class GCN(Model):
""" kipf & welling """ def __init__(self, placeholders, sparse_inputs=False):
super(GCN, self).__init__()
self.input_dim = placeholders['in_dim']
self.hid_dim = placeholders['hid_dim']
self.output_dim = placeholders['out_dim']
self.weight_decay = placeholders['weight_decay']
self.dropout = placeholders['dropout']
self.lr = placeholders['lr']
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
self.build() def build(self):
"""构建2 layer GCN, 并保存参数到vars中
第一层需要sparse_inputs 如果features是sparse,则features x W 要sparsedot
第二层不需要sparse_inputs 因为H0是dense的""" self.layers.append(GraphConvolution(name='GCN_0',
input_dim=self.input_dim,
output_dim=self.hid_dim,
dropout=self.dropout,
act=tf.nn.relu,
sparse_inputs=self.sparse_inputs))
self.layers.append(GraphConvolution(name='GCN_1',
input_dim=self.hid_dim,
output_dim=self.output_dim,
dropout=self.dropout,
act=lambda x: x,
sparse_inputs=False)) for layer in self.layers:
for var in layer.vars.values():
self.vars.append(var) self.op = tf.optimizers.Adam(self.lr) def forward(self, params):
# params: features support
for layer in self.layers:
hidden = layer(params)
params.update({'features': hidden})
return hidden def _update(self, tape, loss):
gradients = tape.gradient(target=loss, sources=self.vars)
self.op.apply_gradients(zip(gradients, self.vars)) def _loss(self, outputs, labels, labels_mask):
loss = masked_softmax_cross_entropy(outputs,
labels,
labels_mask)
for var in self.vars:
loss += self.weight_decay*tf.nn.l2_loss(var)
# Cross entropy error
return loss class FASTGCN(Model): def __init__(self, placeholders, sparse_inputs=False):
super(FASTGCN, self).__init__()
self.input_dim = placeholders['in_dim']
self.hid_dim = placeholders['hid_dim']
self.output_dim = placeholders['out_dim']
self.weight_decay = placeholders['weight_decay']
self.dropout = placeholders['dropout']
self.lr = placeholders['lr']
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
self.build() def build(self):
"""构建2 layer GCN, 并保存参数到vars中
第一层需要sparse_inputs 如果features是sparse,则features x W 要sparsedot
第二层不需要sparse_inputs 因为H0是dense的""" self.layers.append(Dense(name='Dense_0',
input_dim=self.input_dim,
output_dim=self.hid_dim,
dropout=self.dropout,
act=tf.nn.relu,
sparse_inputs=self.sparse_inputs)) self.layers.append(GraphConvolution(name='GCN_1',
input_dim=self.hid_dim,
output_dim=self.output_dim,
dropout=self.dropout,
act=lambda x: x,
sparse_inputs=False)) for layer in self.layers:
for var in layer.vars.values():
self.vars.append(var) self.op = tf.optimizers.Adam(self.lr) def forward(self, params):
# params: features support
for layer in self.layers:
hidden = layer(params)
params.update({'features': hidden})
return hidden def _update(self, tape, loss):
gradients = tape.gradient(target=loss, sources=self.vars)
self.op.apply_gradients(zip(gradients, self.vars)) def _loss(self, outputs, labels):
# batch outputs
loss = softmax_cross_entropy(outputs,
labels)
for var in self.vars:
loss += self.weight_decay*tf.nn.l2_loss(var)
# Cross entropy error
return loss

4.metrics.py

import tensorflow as tf

def masked_softmax_cross_entropy(preds, labels, mask):
"""Softmax cross-entropy loss with masking."""
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
loss *= mask # element-wise 把其它节点遮掉,只用train nodes来训练
return tf.reduce_mean(loss) def masked_accuracy(preds, labels, mask):
"""Accuracy with masking."""
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
accuracy_all *= mask
return tf.reduce_mean(accuracy_all) def softmax_cross_entropy(preds, labels):
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
return tf.reduce_mean(loss) def accuracy(preds, labels):
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
return tf.reduce_mean(accuracy_all)

5.inits.py

import tensorflow as tf
import numpy as np def uniform(shape, scale=0.05, name=None):
"""Uniform init."""
initial = tf.random.uniform(
shape, minval=-scale, maxval=scale, dtype=tf.float32)
return tf.Variable(initial, name=name) def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = tf.random.uniform(
shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name) def zeros(shape, name=None):
"""All zeros."""
initial = tf.zeros(shape, dtype=tf.float32)
return tf.Variable(initial, name=name) def ones(shape, name=None):
"""All ones."""
initial = tf.ones(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)

6.main.py

from model.utils import *
from model.metrics import *
from model.models import FASTGCN
import tensorflow as tf
from scipy.sparse import csr_matrix
import time def iterate_minibatches_listinputs(inputs, batchsize, shuffle=False):
""" 对inputs: [normADJ_train, y_train]进行切片"""
assert inputs is not None
numSamples = inputs[0].shape[0] # 训练节点个数
if shuffle:
indices = np.arange(numSamples)
np.random.shuffle(indices)
""" 步长为batchsize,如果需要shuffle 则对indices进行切片.否则直接按顺序切片. """
for start_idx in range(0, numSamples - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
"""slice(start, stop, step)
=> start -- 起始位置 stop -- 结束位置 step -- 间距 """
excerpt = slice(start_idx, start_idx + batchsize)
""" print(len(excerpt))
>>> 250 (batch_size)
[input[excerpt] for input in inputs] =>
inputs由normADJ_train和y_train组成,
input相当于normADJ_train或y_train,即分别对二者切片 """
yield [input[excerpt] for input in inputs] def construct_params(features, support):
params = dict()
params.update({'support': tf.cast(tf.SparseTensor(
support[0], support[1], support[2]), tf.float32)})
params.update({'features': tf.cast(tf.SparseTensor(
features[0], features[1], features[2]), tf.float32)})
params.update({'num_features_nonzero': features[1].shape})
return params if __name__ == "__main__": (adj, features,
y_train, y_val, y_test,
train_mask, val_mask, test_mask) = load_data('cora')
"""np.where 找出mask中为true的下标 """
train_index = np.where(train_mask)[0]
y_train = y_train[train_index]
val_index = np.where(val_mask)[0]
y_val = y_val[val_index]
test_index = np.where(test_mask)[0]
y_test = y_test[test_index] """print(adj_train.shape, y_train.shape, y_test.shape, y_val.shape)
>>> (1208, 1208) (1208, 7) (1000, 7) (500, 7) """ train_val_index = np.concatenate([train_index, val_index], axis=0)
train_test_idnex = np.concatenate([train_index, test_index], axis=0) """preprocessing csr adj && features:
print(csr_normADJ_train.shape, csr_normADJ_val.shape, csr_normADJ_test.shape)
print(csr_features_train.shape,csr_features_val.shape, csr_features_test.shape)
>>> (1208, 1208) (1708, 1708) (2208, 2208)
>>> (1208, 1433) (1708, 1433) (2208, 1433)"""
csr_normADJ_train = nontuple_preprocess_adj(
adj[train_index, :][:, train_index]) # (1208, 1208)
csr_normADJ_val = nontuple_preprocess_adj(
adj[train_val_index, :][:, train_val_index]) # (1708, 1708)
csr_normADJ_test = nontuple_preprocess_adj(
adj[train_test_idnex, :][:, train_test_idnex]) # (2208, 2208) csr_features_train = nontuple_preprocess_features(
features[train_index])
csr_features_val = nontuple_preprocess_features(
features[train_val_index])
csr_features_test = nontuple_preprocess_features(
features[train_test_idnex]) y_val = np.vstack((y_train, y_val))
y_test = np.vstack((y_train, y_test))
""" 计算每个节点的概率: q(u) = ||A(: , u)||^2 / sum(||A(: , v)||^2) """
p0 = column_prop(csr_normADJ_train) epochs = 200
samplesize = 50 placeholders = {'in_dim': 1433,
'hid_dim': 32,
'out_dim': 7,
'weight_decay': 5e-4,
'dropout': 0.5,
'lr': 0.01} dense_AXfeatures_train = csr_normADJ_train.dot(
csr_features_train.todense())
dense_AXfeatures_val = csr_normADJ_val.dot(
csr_features_val.todense())
dense_AXfeatures_test = csr_normADJ_test.dot(
csr_features_test.todense()) """print(dense_AXfeatures_train.shape, dense_AXfeatures_val.shape, dense_AXfeatures_test.shape)
>>> (1208, 1433) (1708, 1433) (2208, 1433)""" # transform into tuple
tuple_AXfeatures_train = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train))
tuple_AXfeatures_val = sparse_to_tuple(
csr_matrix(dense_AXfeatures_val))
tuple_AXfeatures_test = sparse_to_tuple(
csr_matrix(dense_AXfeatures_test)) model = FASTGCN(placeholders, sparse_inputs=True)
cost_val = []
t = time.time()
for epoch in range(epochs):
for batch in iterate_minibatches_listinputs([csr_normADJ_train, y_train], batchsize=1024, shuffle=True):
[normADJ_batch, y_train_batch] = batch """get support_batch(tuple), features_inputs(tuple). """
if samplesize == -1:
support_batch = sparse_to_tuple(normADJ_batch)
features_inputs = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train))
else:
distr = np.nonzero(np.sum(normADJ_batch, axis=0))[1]
if samplesize > len(distr):
q1 = distr
else:
q1 = np.random.choice(
distr, samplesize, replace=False, p=p0[distr]/sum(p0[distr])) # 根据概率p0选出rank1个顶点
support_batch = sparse_to_tuple(normADJ_batch[:, q1].dot(
sp.diags(1.0 / (p0[q1] * samplesize))))
if len(support_batch[1]) == 0:
continue
features_inputs = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train[q1, :])) """print(support_batch[2], features_inputs[2])
>>> (200, 50) (50, 1433)""" # support_batch used at 2nd layer
params = construct_params(
features_inputs, support_batch) with tf.GradientTape() as tape:
logits = model.forward(params)
loss = model._loss(logits, y_train_batch)
model._update(tape, loss) train_logits = model.forward(construct_params(
tuple_AXfeatures_train, sparse_to_tuple(csr_normADJ_train)))
train_acc = accuracy(train_logits, y_train) val_logits = model.forward(construct_params(
tuple_AXfeatures_val, sparse_to_tuple(csr_normADJ_val)))
val_acc = accuracy(val_logits, y_val) test_logits = model.forward(construct_params(
tuple_AXfeatures_test, sparse_to_tuple(csr_normADJ_test)))
test_acc = accuracy(test_logits, y_test) view_bar('epoch', epoch+1, epochs, loss, train_acc,
val_acc, test_acc, time.time()-t)

 

用matalb、python画聚类结果图的更多相关文章

  1. python 画广东省等压线图

    最近开发时要实现一个业务逻辑: 调用中国气象数据网API接口获取广东省实时气象数据 根据数据,基于广东省地图渲染等压线图 最终效果图是这样的: 首先是获取实时气压数据,由于中国气象数据网每次只能获得3 ...

  2. python画箱线图

    # -*- coding: utf-8 -*- """ Created on Wed Jun 14 13:00:11 2017 @author: Miao "& ...

  3. Python matplot画散列图

    同matlab一样,matplot也可画散列图scatter. import numpy as np import matplotlib.pyplot as plt #fig = plt.figure ...

  4. 利用Tkinter和matplotlib两种方式画饼状图

    当我们学习python的时候,总会用到一些常用的模块,接下来我就详细讲解下利用两种不同的方式画饼状图.首先利用[Tkinter]中的canvas画布来画饼状图: from tkinter import ...

  5. 沉淀再出发:用python画各种图表

    沉淀再出发:用python画各种图表 一.前言 最近需要用python来做一些统计和画图,因此做一些笔记. 二.python画各种图表 2.1.使用turtle来画图 import turtle as ...

  6. 利用python画出动态高优先权优先调度

    之前写过一个文章. 利用python画出SJF调度图 动态高度优先权优先调度 动态优先权调度算法,以就绪队列中各个进程的优先权作为进程调度的依据.各个进程的优先权在创建进程时所赋予,随着进程的推进或其 ...

  7. 用Python画如此漂亮的专业插图 ?简直So easy!

    本文整理自知乎问答,仅用于学术分享,著作权归作者所有.如有侵权,请联系我删文处理.多多转发,多多学习! 方法一 强烈推荐 Python 的绘图模块 matplotlib: python plottin ...

  8. 用python画xy散点图

    import matplotlib.pyplot as plt plt.plot([1,2,3],[4,5,6],'ro') plt.show()#这个智障的编辑器 这样的话,就可以画一个散点图,图中 ...

  9. 四步轻松实现用Visio画UML类图

    本节和大家一起学习一下用Visio画UML类图的方法,主要有四个步骤,这里和大家分享一下,相信通过本节的学习,你对Visio画UML类图的步骤一定会有所了解. 用Visio画UML类图 对于画类图的工 ...

随机推荐

  1. springboot配置文件(.yml)中自定义属性值并在controller里面获取

    1,由于项目需要,学习了新的框架--springboot,顺便练习一下在.yml中配置自定义属性并在controller里面获取.(以下的Springboot框架我已经搭建好,就不在陈述) 2,spr ...

  2. 微信小程序windowHeight的值在ios和android平台不一致问题解决办法

    开发中遇到一个业务需求,需要把页面顶部.底部固定,中间的scroll-view内部滚动.要满足这个需求,需要根据屏幕高度计算中间的scroll-view高度.结果悲催地发现,使用 wx.getSyst ...

  3. openstack常用命令-neutron篇

    列出当前租户所有的网络 neutron net-list 列出所有租户的所有网络(需要管理员权限) neutron net-list --all-tenants 创建一个网络(vlan/flat) n ...

  4. 最近的AI

    虚拟币和AI  两个大类怎么兴起?

  5. 解决Ubuntu19.04下网易云音乐打不开的问题

    Ubuntu19.04下打开网易云音乐的v18.04版会出现以下错误: opt/netease/netease-cloud-music/netease-cloud-music: symbol look ...

  6. Spring Boot框架的自动配置

    (图片来源于网络,侵删!!!) l  @RestController 因为我们例子是写一个web应用,因此写的这个注解,这个注解相当于同时添加@Controller和@ResponseBody注解 l ...

  7. cocos creator

    动画效果: 如图在场景中创建一个空节点,点击添加Animatiion 选中要改变的属性.(以spriteFrame为例) 将选中的图片拖动到所示位置,此时点击播放按钮即可预览. 保存之后将层级管理器中 ...

  8. Java for-each循环解惑

    Java for-each循环解惑 2014/04/24 | 分类: 技术之外 | 0 条评论 | 标签: JAVA 分享到:21 本文由 ImportNew - liqing 翻译自 javarev ...

  9. React 组件间通信介绍

    React 组件间通信方式简介 React 组件间通信主要分为以下四种情况: 父组件向子组件通信 子组件向父组件通信 跨级组件之间通信 非嵌套组件间通信 下面对这四种情况分别进行介绍:   父组件向子 ...

  10. Sqlsession 的理解

    MyBatis的持久化解决方案是将用户从原始的JDBC访问中解放出来,用户只需要定义需要操作的SQL语句,无须关注底层的JDBC操作,就可以以面向对象的方式来进行持久化层操作.底层数据库连接的获取,数 ...