用matalb、python画聚类结果图


1.utils.py
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
import sys
from scipy.sparse.linalg import norm as sparsenorm
from scipy.linalg import qr
import math def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool) def load_data(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist()
idx_train = range(len(ally)-500)
idx_val = range(len(ally)-500, len(ally)) train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def load_data_original(dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended # features (2708,1433) labels (2708,7)
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500) train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx) return sparse_mx def nontuple_preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return sparse_to_tuple(features) def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def nontuple_preprocess_adj(adj):
""" 返回对称归一化的邻接矩阵 type:csr """
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
return adj_normalized.tocsr() def column_prop(adj):
""" detail reference:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm
等价于array形式:
arr = np.array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
column_norm = np.linalg.norm(arr, axis=0) 对每一列求二范数
print column_norm
>>> [ 3.74165739 8.77496439 13.92838828] => [sqrt(1^2+2^2+3^2) sqrt(4^2+5^2+6^2) sqrt(7^2+8^2+9^2)]
norm_sum = sum(column_norm) # 归一化
print(column_norm/norm_sum)
>>> [0.14148822 0.33181929 0.52669249]
"""
column_norm = sparsenorm(adj, axis=0)
# column_norm = pow(sparsenorm(adj, axis=0),2)
norm_sum = sum(column_norm)
return column_norm/norm_sum def mix_prop(adj, features, sparseinputs=False):
adj_column_norm = sparsenorm(adj, axis=0)
if sparseinputs:
features_row_norm = sparsenorm(features, axis=1)
else:
features_row_norm = np.linalg.norm(features, axis=1)
mix_norm = adj_column_norm*features_row_norm norm_sum = sum(mix_norm)
return mix_norm / norm_sum def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj)
return sparse_to_tuple(adj_normalized) def dense_lanczos(A, K):
q = np.random.randn(A.shape[0], )
Q, sigma = lanczos(A, K, q)
A2 = np.dot(Q[:, :K], np.dot(sigma[:K, :K], Q[:, :K].T))
return sp.csr_matrix(A2) def sparse_lanczos(A, k):
q = sp.random(A.shape[0], 1)
n = A.shape[0]
Q = sp.lil_matrix(np.zeros((n, k+1)))
A = sp.lil_matrix(A) Q[:, 0] = q/sparsenorm(q) alpha = 0
beta = 0 for i in range(k):
if i == 0:
q = A*Q[:, i]
else:
q = A*Q[:, i] - beta*Q[:, i-1]
alpha = q.T*Q[:, i]
q = q - Q[:, i]*alpha
q = q - Q[:, :i]*Q[:, :i].T*q # full reorthogonalization
beta = sparsenorm(q)
Q[:, i+1] = q/beta
print(i) Q = Q[:, :k] Sigma = Q.T*A*Q
A2 = Q[:, :k]*Sigma[:k, :k]*Q[:, :k].T
return A2
# return Q, Sigma def dense_RandomSVD(A, K):
G = np.random.randn(A.shape[0], K)
B = np.dot(A, G)
Q, R = qr(B, mode='economic')
M = np.dot(Q, np.dot(Q.T, A))
return sp.csr_matrix(M) def construct_feed_dict(features, support, labels, labels_mask, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['labels_mask']: labels_mask})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['support'][i]: support[i]
for i in range(len(support))})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
return feed_dict def chebyshev_polynomials(adj, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj)
laplacian = sp.eye(adj.shape[0]) - adj_normalized
largest_eigval, _ = eigsh(laplacian, 1, which='LM')
scaled_laplacian = (
2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list()
t_k.append(sp.eye(adj.shape[0]))
t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
s_lap = sp.csr_matrix(scaled_lap, copy=True)
return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1):
t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def view_bar(message, num, total, loss, train_acc, val_acc, test_acc, times):
rate = num / total
rate_num = int(rate * 40)
rate_nums = math.ceil(rate * 100)
r = '\r%s:[%s%s]%d%%\t%d/%d - loss:%.3f - train_acc:%.3f - val_acc:%.3f - test_acc:%.3f - time:%.2fs' % (message,
"=" * rate_num,
" " *
(40 - rate_num),
rate_nums,
num,
total,
loss,
train_acc,
val_acc,
test_acc,
times)
sys.stdout.write(r)
sys.stdout.flush()
2.layers.py
import tensorflow as tf
from model.inits import *
from model.utils import * def sparse_dropout(x, keep_prob, noise_shape):
"""Dropout for sparse tensors."""
random_tensor = keep_prob
random_tensor += tf.random.uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse.retain(x, dropout_mask)
return pre_out * (1./keep_prob) def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
if sparse:
res = tf.sparse.sparse_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res class Layer(object):
def __init__(self, **kwargs):
self.vars = {} def _call(self, params):
"""implement the layer operation """
return params def __call__(self, params):
outputs = self._call(params)
return outputs class Dense(Layer):
def __init__(self, name, input_dim, output_dim, dropout=0.0,
sparse_inputs=False, act=tf.nn.relu, bias=False, **kwargs):
super(Dense, self).__init__(**kwargs)
self.name = name
self.dropout = dropout
self.act = act
self.out_dim = output_dim # bool
self.bias = bias
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
# define params
self.vars['weight'] = glorot([input_dim, output_dim],
name=self.name+'weight')
if self.bias:
self.vars['bias'] = zeros([output_dim],
name=self.name+'bias') def _call(self, params):
"""params: features support """
x = params['features'] # dropout x
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout,
params['num_features_nonzero'])
else:
x = tf.nn.dropout(x, 1-self.dropout) output = dot(x, self.vars['weight'], sparse=self.sparse_inputs) if self.bias:
output += self.vars['bias']
return self.act(output) class GraphConvolution(Layer):
def __init__(self, name, input_dim, output_dim, dropout=0.0,
sparse_inputs=False, act=tf.nn.relu, bias=False, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.name = name
self.dropout = dropout
self.act = act
self.out_dim = output_dim # bool
self.bias = bias
self.sparse_inputs = sparse_inputs # params['features'] sparse or not # define params
self.vars['weight'] = glorot([input_dim, output_dim],
name=self.name+'weight')
if self.bias:
self.vars['bias'] = zeros([output_dim],
name=self.name+'bias') def _call(self, params):
x = params['features']
support = params['support']
# dropout x
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout,
params['num_features_nonzero'])
else:
x = tf.nn.dropout(x, 1-self.dropout) # x is sparse
pre_sup = dot(x, self.vars['weight'],
sparse=self.sparse_inputs) # x.dot(w) # support is sparse
output = dot(support, pre_sup, sparse=True) # Axw if self.bias:
output += self.vars['bias']
return self.act(output)
3.models.py
from model.layers import *
from model.metrics import *
import numpy as np class Model(object):
def __init__(self):
self.vars = []
self.layers = [] def forward(self):
raise NotImplementedError def _update(self):
raise NotImplementedError def _loss(self):
raise NotImplementedError class GCN(Model):
""" kipf & welling """ def __init__(self, placeholders, sparse_inputs=False):
super(GCN, self).__init__()
self.input_dim = placeholders['in_dim']
self.hid_dim = placeholders['hid_dim']
self.output_dim = placeholders['out_dim']
self.weight_decay = placeholders['weight_decay']
self.dropout = placeholders['dropout']
self.lr = placeholders['lr']
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
self.build() def build(self):
"""构建2 layer GCN, 并保存参数到vars中
第一层需要sparse_inputs 如果features是sparse,则features x W 要sparsedot
第二层不需要sparse_inputs 因为H0是dense的""" self.layers.append(GraphConvolution(name='GCN_0',
input_dim=self.input_dim,
output_dim=self.hid_dim,
dropout=self.dropout,
act=tf.nn.relu,
sparse_inputs=self.sparse_inputs))
self.layers.append(GraphConvolution(name='GCN_1',
input_dim=self.hid_dim,
output_dim=self.output_dim,
dropout=self.dropout,
act=lambda x: x,
sparse_inputs=False)) for layer in self.layers:
for var in layer.vars.values():
self.vars.append(var) self.op = tf.optimizers.Adam(self.lr) def forward(self, params):
# params: features support
for layer in self.layers:
hidden = layer(params)
params.update({'features': hidden})
return hidden def _update(self, tape, loss):
gradients = tape.gradient(target=loss, sources=self.vars)
self.op.apply_gradients(zip(gradients, self.vars)) def _loss(self, outputs, labels, labels_mask):
loss = masked_softmax_cross_entropy(outputs,
labels,
labels_mask)
for var in self.vars:
loss += self.weight_decay*tf.nn.l2_loss(var)
# Cross entropy error
return loss class FASTGCN(Model): def __init__(self, placeholders, sparse_inputs=False):
super(FASTGCN, self).__init__()
self.input_dim = placeholders['in_dim']
self.hid_dim = placeholders['hid_dim']
self.output_dim = placeholders['out_dim']
self.weight_decay = placeholders['weight_decay']
self.dropout = placeholders['dropout']
self.lr = placeholders['lr']
self.sparse_inputs = sparse_inputs # params['features'] sparse or not
self.build() def build(self):
"""构建2 layer GCN, 并保存参数到vars中
第一层需要sparse_inputs 如果features是sparse,则features x W 要sparsedot
第二层不需要sparse_inputs 因为H0是dense的""" self.layers.append(Dense(name='Dense_0',
input_dim=self.input_dim,
output_dim=self.hid_dim,
dropout=self.dropout,
act=tf.nn.relu,
sparse_inputs=self.sparse_inputs)) self.layers.append(GraphConvolution(name='GCN_1',
input_dim=self.hid_dim,
output_dim=self.output_dim,
dropout=self.dropout,
act=lambda x: x,
sparse_inputs=False)) for layer in self.layers:
for var in layer.vars.values():
self.vars.append(var) self.op = tf.optimizers.Adam(self.lr) def forward(self, params):
# params: features support
for layer in self.layers:
hidden = layer(params)
params.update({'features': hidden})
return hidden def _update(self, tape, loss):
gradients = tape.gradient(target=loss, sources=self.vars)
self.op.apply_gradients(zip(gradients, self.vars)) def _loss(self, outputs, labels):
# batch outputs
loss = softmax_cross_entropy(outputs,
labels)
for var in self.vars:
loss += self.weight_decay*tf.nn.l2_loss(var)
# Cross entropy error
return loss
4.metrics.py
import tensorflow as tf def masked_softmax_cross_entropy(preds, labels, mask):
"""Softmax cross-entropy loss with masking."""
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
loss *= mask # element-wise 把其它节点遮掉,只用train nodes来训练
return tf.reduce_mean(loss) def masked_accuracy(preds, labels, mask):
"""Accuracy with masking."""
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
accuracy_all *= mask
return tf.reduce_mean(accuracy_all) def softmax_cross_entropy(preds, labels):
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
return tf.reduce_mean(loss) def accuracy(preds, labels):
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
return tf.reduce_mean(accuracy_all)
5.inits.py
import tensorflow as tf
import numpy as np def uniform(shape, scale=0.05, name=None):
"""Uniform init."""
initial = tf.random.uniform(
shape, minval=-scale, maxval=scale, dtype=tf.float32)
return tf.Variable(initial, name=name) def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = tf.random.uniform(
shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name) def zeros(shape, name=None):
"""All zeros."""
initial = tf.zeros(shape, dtype=tf.float32)
return tf.Variable(initial, name=name) def ones(shape, name=None):
"""All ones."""
initial = tf.ones(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
6.main.py
from model.utils import *
from model.metrics import *
from model.models import FASTGCN
import tensorflow as tf
from scipy.sparse import csr_matrix
import time def iterate_minibatches_listinputs(inputs, batchsize, shuffle=False):
""" 对inputs: [normADJ_train, y_train]进行切片"""
assert inputs is not None
numSamples = inputs[0].shape[0] # 训练节点个数
if shuffle:
indices = np.arange(numSamples)
np.random.shuffle(indices)
""" 步长为batchsize,如果需要shuffle 则对indices进行切片.否则直接按顺序切片. """
for start_idx in range(0, numSamples - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
"""slice(start, stop, step)
=> start -- 起始位置 stop -- 结束位置 step -- 间距 """
excerpt = slice(start_idx, start_idx + batchsize)
""" print(len(excerpt))
>>> 250 (batch_size)
[input[excerpt] for input in inputs] =>
inputs由normADJ_train和y_train组成,
input相当于normADJ_train或y_train,即分别对二者切片 """
yield [input[excerpt] for input in inputs] def construct_params(features, support):
params = dict()
params.update({'support': tf.cast(tf.SparseTensor(
support[0], support[1], support[2]), tf.float32)})
params.update({'features': tf.cast(tf.SparseTensor(
features[0], features[1], features[2]), tf.float32)})
params.update({'num_features_nonzero': features[1].shape})
return params if __name__ == "__main__": (adj, features,
y_train, y_val, y_test,
train_mask, val_mask, test_mask) = load_data('cora')
"""np.where 找出mask中为true的下标 """
train_index = np.where(train_mask)[0]
y_train = y_train[train_index]
val_index = np.where(val_mask)[0]
y_val = y_val[val_index]
test_index = np.where(test_mask)[0]
y_test = y_test[test_index] """print(adj_train.shape, y_train.shape, y_test.shape, y_val.shape)
>>> (1208, 1208) (1208, 7) (1000, 7) (500, 7) """ train_val_index = np.concatenate([train_index, val_index], axis=0)
train_test_idnex = np.concatenate([train_index, test_index], axis=0) """preprocessing csr adj && features:
print(csr_normADJ_train.shape, csr_normADJ_val.shape, csr_normADJ_test.shape)
print(csr_features_train.shape,csr_features_val.shape, csr_features_test.shape)
>>> (1208, 1208) (1708, 1708) (2208, 2208)
>>> (1208, 1433) (1708, 1433) (2208, 1433)"""
csr_normADJ_train = nontuple_preprocess_adj(
adj[train_index, :][:, train_index]) # (1208, 1208)
csr_normADJ_val = nontuple_preprocess_adj(
adj[train_val_index, :][:, train_val_index]) # (1708, 1708)
csr_normADJ_test = nontuple_preprocess_adj(
adj[train_test_idnex, :][:, train_test_idnex]) # (2208, 2208) csr_features_train = nontuple_preprocess_features(
features[train_index])
csr_features_val = nontuple_preprocess_features(
features[train_val_index])
csr_features_test = nontuple_preprocess_features(
features[train_test_idnex]) y_val = np.vstack((y_train, y_val))
y_test = np.vstack((y_train, y_test))
""" 计算每个节点的概率: q(u) = ||A(: , u)||^2 / sum(||A(: , v)||^2) """
p0 = column_prop(csr_normADJ_train) epochs = 200
samplesize = 50 placeholders = {'in_dim': 1433,
'hid_dim': 32,
'out_dim': 7,
'weight_decay': 5e-4,
'dropout': 0.5,
'lr': 0.01} dense_AXfeatures_train = csr_normADJ_train.dot(
csr_features_train.todense())
dense_AXfeatures_val = csr_normADJ_val.dot(
csr_features_val.todense())
dense_AXfeatures_test = csr_normADJ_test.dot(
csr_features_test.todense()) """print(dense_AXfeatures_train.shape, dense_AXfeatures_val.shape, dense_AXfeatures_test.shape)
>>> (1208, 1433) (1708, 1433) (2208, 1433)""" # transform into tuple
tuple_AXfeatures_train = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train))
tuple_AXfeatures_val = sparse_to_tuple(
csr_matrix(dense_AXfeatures_val))
tuple_AXfeatures_test = sparse_to_tuple(
csr_matrix(dense_AXfeatures_test)) model = FASTGCN(placeholders, sparse_inputs=True)
cost_val = []
t = time.time()
for epoch in range(epochs):
for batch in iterate_minibatches_listinputs([csr_normADJ_train, y_train], batchsize=1024, shuffle=True):
[normADJ_batch, y_train_batch] = batch """get support_batch(tuple), features_inputs(tuple). """
if samplesize == -1:
support_batch = sparse_to_tuple(normADJ_batch)
features_inputs = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train))
else:
distr = np.nonzero(np.sum(normADJ_batch, axis=0))[1]
if samplesize > len(distr):
q1 = distr
else:
q1 = np.random.choice(
distr, samplesize, replace=False, p=p0[distr]/sum(p0[distr])) # 根据概率p0选出rank1个顶点
support_batch = sparse_to_tuple(normADJ_batch[:, q1].dot(
sp.diags(1.0 / (p0[q1] * samplesize))))
if len(support_batch[1]) == 0:
continue
features_inputs = sparse_to_tuple(
csr_matrix(dense_AXfeatures_train[q1, :])) """print(support_batch[2], features_inputs[2])
>>> (200, 50) (50, 1433)""" # support_batch used at 2nd layer
params = construct_params(
features_inputs, support_batch) with tf.GradientTape() as tape:
logits = model.forward(params)
loss = model._loss(logits, y_train_batch)
model._update(tape, loss) train_logits = model.forward(construct_params(
tuple_AXfeatures_train, sparse_to_tuple(csr_normADJ_train)))
train_acc = accuracy(train_logits, y_train) val_logits = model.forward(construct_params(
tuple_AXfeatures_val, sparse_to_tuple(csr_normADJ_val)))
val_acc = accuracy(val_logits, y_val) test_logits = model.forward(construct_params(
tuple_AXfeatures_test, sparse_to_tuple(csr_normADJ_test)))
test_acc = accuracy(test_logits, y_test) view_bar('epoch', epoch+1, epochs, loss, train_acc,
val_acc, test_acc, time.time()-t)
用matalb、python画聚类结果图的更多相关文章
- python 画广东省等压线图
最近开发时要实现一个业务逻辑: 调用中国气象数据网API接口获取广东省实时气象数据 根据数据,基于广东省地图渲染等压线图 最终效果图是这样的: 首先是获取实时气压数据,由于中国气象数据网每次只能获得3 ...
- python画箱线图
# -*- coding: utf-8 -*- """ Created on Wed Jun 14 13:00:11 2017 @author: Miao "& ...
- Python matplot画散列图
同matlab一样,matplot也可画散列图scatter. import numpy as np import matplotlib.pyplot as plt #fig = plt.figure ...
- 利用Tkinter和matplotlib两种方式画饼状图
当我们学习python的时候,总会用到一些常用的模块,接下来我就详细讲解下利用两种不同的方式画饼状图.首先利用[Tkinter]中的canvas画布来画饼状图: from tkinter import ...
- 沉淀再出发:用python画各种图表
沉淀再出发:用python画各种图表 一.前言 最近需要用python来做一些统计和画图,因此做一些笔记. 二.python画各种图表 2.1.使用turtle来画图 import turtle as ...
- 利用python画出动态高优先权优先调度
之前写过一个文章. 利用python画出SJF调度图 动态高度优先权优先调度 动态优先权调度算法,以就绪队列中各个进程的优先权作为进程调度的依据.各个进程的优先权在创建进程时所赋予,随着进程的推进或其 ...
- 用Python画如此漂亮的专业插图 ?简直So easy!
本文整理自知乎问答,仅用于学术分享,著作权归作者所有.如有侵权,请联系我删文处理.多多转发,多多学习! 方法一 强烈推荐 Python 的绘图模块 matplotlib: python plottin ...
- 用python画xy散点图
import matplotlib.pyplot as plt plt.plot([1,2,3],[4,5,6],'ro') plt.show()#这个智障的编辑器 这样的话,就可以画一个散点图,图中 ...
- 四步轻松实现用Visio画UML类图
本节和大家一起学习一下用Visio画UML类图的方法,主要有四个步骤,这里和大家分享一下,相信通过本节的学习,你对Visio画UML类图的步骤一定会有所了解. 用Visio画UML类图 对于画类图的工 ...
随机推荐
- java版数据结构与算法第二章数组
数组由一组具有相同类型的数据元素组成,并存储在一组连续存储单元中.一维数组是常量. 二维数组:若一维数组中的数据元素又是一堆数据结构,我们称之为二维数组.二维数组可以看成是n个列向量组成的线性表. 数 ...
- 为什么在 Linux 系统中,不建议超频
CPU 是一部计算机内的心脏啦!因为不论你做什么事情都需要 CPU 来加以运作的!(虽然有时工作量大.有时工作量小!),在 586 以前的计算机( 包含 386, 486, 与 586 ) ,CPU ...
- protel项目创建
File->New->Project->PCB Project//新建PCB项目 Save Project As... Project->Add New to Project- ...
- C#杀掉进程的方法
C#杀掉进程的方法 private static string CmdName = "cmd"; /// <summary> /// 关闭进程 /// </sum ...
- keras图像风格迁移
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...
- centos7 ,windows7 grub2 双系统引导
因为原先的windows7 和 centos6.3 安装在一台笔记本上.因为centos6.3不能识别无线网卡,在网上找了找,要升级内核到3.2以上. 因为本人初级水平,不敢擅自行动,怕把window ...
- pycharm(pythoon3)_django2.0_xadmin创建测试用例后台管理系统
1.测试用例的app名字:Testcase 2.Testcase文件夹下各个文件的代码: 2.1. __init__.py: default_app_config = "TestCase.a ...
- jQuery-3.事件篇---自定义事件
jQuery自定义事件之trigger事件 众所周知类似于mousedown.click.keydown等等这类型的事件都是浏览器提供的,通俗叫原生事件,这类型的事件是需要有交互行为才能被触发. 在j ...
- 固态硬盘Ghost安装Windows 10无法引导的问题
机器配置如下: 电脑型号 技嘉 B360M POWER 台式电脑 操作系统 Windows 10 64位 ( DirectX 12 ) 处理器 英特尔 Core i7-8700 @ 3.20GHz 六 ...
- rsa公钥和私钥的生成
在liunx环境中 openssl 然后生成私钥: genrsa -out app_private_key.pem 2048 # 私钥的生成 在利用私钥生成公钥: rsa -in app_privat ...