linux install Openvino
recommend centos7
1. download
openvino addational installation for ncs2
browser download https://pan.baidu.com/s/1jN3gP2TDndeguqqGFS78GQ to ~/obama.mp4
2. install ui
Report error:
Transaction check error:
file /boot/efi/EFI/centos from install of fwupdate-efi-12-5.el7.centos.x86_64 conflicts with file from package grub2-common-1:2.02-0.65.el7.centos.2.noarch
resolve by fwupdate-efi conflicts with grub2-common
2. Movidius
ncsdk 和 openvino 没有关系。
doc1:
cd /opt/intel/computer_vision_sdk/deployment_tools/documentation
python3 -m http.server
doc2:
/opt/intel/computer_vision_sdk/deployment_tools/intel_models
python3 -m http.server 8001
3. build exmaple
cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples
./build_samples.sh
echo "PATH=\$PATH:$HOME/inference_engine_samples_build/intel64/Release" >> ~/.bashrc
source ~/.bashrc # Build completed, you can find binaries for all samples in the /home/user/inference_engine_samples_build/intel64/Release subfolder.
ls /opt/intel/computer_vision_sdk/deployment_tools/intel_models
4. Pre-Trained Models (Open Model Zoo)
echo "MZOOPATH=/opt/intel/computer_vision_sdk/deployment_tools/intel_models" >> ~/.bashrc
source ~/.bashrc
5. download new Model
cd /opt/intel/computer_vision_sdk/deployment_tools/model_downloader
echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_downloader" >> ~/.bashrc
echo "PATH=\$PATH:/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer" >> ~/.bashrc
source ~/.bashrc
# python3 downloader.py --name alexnet
downloader.py --name alexnet
cd $HOME/classification/alexnet/caffe/
# python3 mo.py --input_model alexnet.caffemodel
mo.py --input_model alexnet.caffemodel
6. classification
wget https://www.petmd.com/sites/default/files/what-does-it-mean-when-cat-wags-tail.jpg -O cat.jpg classification_sample -i cat.jpg -m alexnet.xml -nt 5
7. Security Barrier Camera Demo
cd $MZOOPATH security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-1.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml security_barrier_camera_demo -i vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-1.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml security_barrier_camera_demo -i vehicle-license-plate-detection-barrier-0106/description/vehicle-license-plate-detection-barrier-0106.jpeg vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml security_barrier_camera_demo -i license-plate-recognition-barrier-0001/description/license-plate-recognition-barrier-0001.png vehicle-attributes-recognition-barrier-0039/description/vehicle-attributes-recognition-barrier-0039-2.png -m vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106.xml -m_va vehicle-attributes-recognition-barrier-0039/FP32/vehicle-attributes-recognition-barrier-0039.xml -m_lpr license-plate-recognition-barrier-0001/FP32/license-plate-recognition-barrier-0001.xml
8. Object Detection for Faster R-CNN Demo
mkdir -p ~/ObjDetection/faster_rcnn/caffe
cd ~/ObjDetection/faster_rcnn/caffe wget https://raw.githubusercontent.com/rbgirshick/py-faster-rcnn/master/models/pascal_voc/VGG16/faster_rcnn_end2end/test.prototxt # curl -k -O -L https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0 mv faster_rcnn_models.tgz* faster_rcnn_models.tgz
tar -zxvf faster_rcnn_models.tgz
# cd faster_rcnn_models/
mo_caffe.py --input_model faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel --input_proto test.prototxt object_detection_demo -i $MZOOPATH/person-detection-retail-0002/description/person-detection-retail-0002.png -m VGG16_faster_rcnn_final.xml
cd $MZOOPATH
object_detection_demo -i $MZOOPATH/person-detection-retail-0002/description/person-detection-retail-0002.png -m person-detection-retail-0002/FP32/person-detection-retail-0002.xml --bbox_name detector/bbox/ave_pred -d CPU
8. Object Detection SSD Demo, Async API Performance Showcase
object_detection_demo_ssd_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/ssd.xml -d GPU
9. Object Detection with SSD-VGG Sample
object_detection_sample_ssd -i $MZOOPATH/person-detection-retail-0013/description/person-detection-retail-0013.png -m $MZOOPATH/person-detection-retail-0013/FP32/person-detection-retail-0013.xml
10. TensorFlow* Object Detection Mask R-CNNs Segmentation Demo
./mask_rcnn_demo -i <path_to_image>/inputImage.bmp -m <path_to_model>/faster_rcnn.xml
11. Automatic Speech Recognition Sample
mkdir -p ~/kaldi/gna/
cd ~/kaldi/gna/
wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b.counts wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/wsj_dnn5b.nnet wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_scores_10.ark wget https://download.01.org/openvinotoolkit/2018_R3/models_contrib/GNA/wsj_dnn5b_smbr/dev93_10.ark mo.py --framework kaldi --input_model wsj*.nnet --counts wsj*.counts --remove_output_softmax speech_sample -d GNA_AUTO -bs 2 -i dev93_10.ark -m wsj_dnn5b.xml -o scores.ark -r dev93_scores_10.ark
12. Use of Sample in Kaldi* Speech Recognition Pipeline
普及 Kaldi
13. Neural Style Transfer Sample
$ locate cat.jpg
/home/user/ncappzoo/data/images/cat.jpg
/home/user/ncsdk/examples/data/images/cat.jpg
/opt/movidius/ssd-caffe/examples/images/cat.jpg
./style_transfer_sample -i <path_to_image>/cat.bmp -m <path_to_model>/1_decoder_FP32.xml
14. Hello Infer Request Classification Sample
cd $HOME/classification/alexnet/caffe/
hello_request_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat.jpg CPU
15. Interactive Face Detection Demo
16. Image Segmentation Demo
17. Crossroad Camera Demo
cd $MZOOPATH
crossroad_camera_demo -i vdieo.mp4 -m person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.xml -m_pa person-attributes-recognition-crossroad-0200/FP32/person-attributes-recognition-crossroad-0200.xml -m_reid person-reidentification-retail-0079/FP32/person-reidentification-retail-0079.xml
18. Multi-Channel Face Detection Demo
multi-channel-demo -m $MZOOPATH/face-detection-retail-0004/FP32/face-detection-retail-0004.xml \
-l $HOME/inference_engine_samples_build/intel64/Release/lib/libcpu_extension.so \
-nc 1 -duplicate_num 3
19. Hello Autoresize Classification Sample
cd $HOME/classification/alexnet/caffe/
hello_autoresize_classification alexnet.xml /home/user/ncsdk/examples/data/images/cat.jpg CPU
20. Hello Shape Infer Sample
./hello_shape_infer_ssd <path_to_model>/ssd_300.xml <path_to_image>/500x500.bmp CPU 3
21. Human Pose Estimation Demo
human_pose_estimation_demo -i ~/obama.mp4 -m $MZOOPATH/human-pose-estimation-0001/FP32/human-pose-estimation-0001.xml -d CPU
22. Object Detection YOLO* V3 Demo, Async API Performance Showcase
object_detection_demo_yolov3_async -i <path_to_video>/inputVideo.mp4 -m <path_to_model>/yolo_v3.xml -d GPU
23. Pedestrian Tracker Demo
pedestrian_tracker_demo -i ~/obama.mp4 -m_det $MZOOPATH/person-detection-retail-0013/FP32/person-detection-retail-0013.xml -m_reid $MZOOPATH/person-reidentification-retail-0031/FP32/person-reidentification-retail-0031.xml
24. Smart Classroom Demo
./smart_classroom_demo -m_act <path to the person/action detection retail model .xml file> -m_fd <path to the face detection retail model .xml file> -m_reid <path to the face reidentification retail model .xml file> -m_lm <path to the landmarks regression retail model .xml file> -fg <path to faces_gallery.json> -i <path to the input video>
25. Super Resolution Demo
./super_resolution_demo -i <path_to_image>/image.bmp -m <path_to_model>/model.xml
26. Using the Validation Application to Check Accuracy on a Dataset
cd ~
git clone -b ssd https://github.com/weiliu89/caffe.git
cd caffe
git branch
cd .. wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar
sed -i -e "s/^\(INCLUDE_DIRS := \$(PYTHON_INCLUDE) \/usr\/local\/include\)/\1 \/usr\/incl
ude\/hdf5\/serial\//" Makefile.config sed -i -e "s/hdf5_hl hdf5/hdf5_serial_hl hdf5_serial/" Makefile
Hardware-accelerated Function-as-a-Service Using AWS Greengrass* (Beta)
linux install Openvino的更多相关文章
- linux install wineQQ
Linux上没有QQ太麻烦了,查了一下讲wineQQ安装上去了,亲测可以使用滴---就是版本低,安装步骤如下: 一.安装Wine 1.添加PPA sudo add-apt-repository ppa ...
- linux install Theano+Tensorflow+Keras
安装过程中,网络状态一定要好,如果安装过程中出现time out的提示信息,今天就可以洗洗睡啦,等明天网络状态好的时候再安装. 安装过程出现不知名的错误的时候,执行第一步,update一下 1.#up ...
- linux install sublime_text3
ubuntu & debian: (baidu or google) 1). download ***.deb to install inux系统下怎么安装.deb文件? deb 是 ubun ...
- Linux install sogou input method
# Copyright (c) 2016, 付刘伟 (Liuwei Fu)# All rights reserved.# 转载请注明出处 Linux下安装搜狗输入法需要安装以下插件,当以下所有插件安装 ...
- linux install tomcat
折腾了好久,按照官网的安装流程安装了不止3次,发现还是不能成功,最终发现是linux机器本身的问题,因为我用的公司的virtual machine,可能是机器本身在一次迁移的过程当中出现了问题,导致了 ...
- 2018 kali linux install tools
1.VM setup https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html VMware-Wo ...
- RHEL / CentOS Linux Install Core Development Tools Automake, Gcc (C/C++), Perl, Python & Debuggers
how do I install all developer tools such as GNU GCC C/C++ compilers, make and others, after install ...
- linux install mysql
sudo apt-get install mysql-server #此处会输入root的密码,设置的密码要记住 sudo apt-get install mysql-client sudo apt- ...
- linux install StarDict
1. sudo apt-get install stardict 2. Downloads from: http://abloz.com/huzheng/stardict-dic/zh_CN/ 3. ...
随机推荐
- 音视频下载Chrome插件 官方主页
2019年3月20日前的旧版有不能下载的情况,请使用下面的新版 音视频下载是个点击图标后就能下载网页里正在播放的音视频文件的软件 下载:官方下载 百度网盘 Chr ...
- [05-02]红帽linux常用操作命令
命令怎么用(三种方式) shutdown --help shutdown --? man shutdown (man 就是manual 手册, 指南) 服务 service 怎么知道服务的名字呢? ...
- KeepAlive安装指南
https://blog.csdn.net/yelllowcong/article/details/78764780
- javascript 的引入
目录 一.静态引入 1. html标签script引入 2. esm 中import ModuleName from 'module/path' 3. commonjs 中 const ModuleN ...
- MySQL的GTID复制与传统复制的相互转换
主库:192.168.225.128:3307从库1:192.168.225.129:3307 Gtid作为5.6版本以来的杀手级特性,却因为不支持拓扑结构内开关而饱受诟病.如果你需要从未开启GTID ...
- Got fatal error 1236 from master when reading data from binary log: 'Could not find first log file name in binary log index file'系列一:
从库报这个错误:Got fatal error 1236 from master when reading data from binary log: 'Could not find first lo ...
- 接口自动化框架(java)--4.接口Token传递
这套框架的报告是自己封装的 一般token会在登录接口返回结果中呈现,从代码层面获取token的方式有很多种,我是使用jsonpath这个json路径语言去匹配token所在路径的key值 packa ...
- ZIP压缩指定路径
using Common; using Newtonsoft.Json; using Newtonsoft.Json.Linq; using Quartz; using Quartz.Impl; us ...
- 扫黑除恶Team second
团队介绍: 团队序号:② 团队名称:扫黑除恶 团队项目:飞机大战游戏 团队码云地址:https://gitee.com/MrLiu199903/seflash/branches 撰写人:刘新飞 学号: ...
- Java基础(Java补码)
原码,反码,补码是java数值运算的基础,在计算机程序中,数值运算是基于二进制的,也就是说底层是二进制运算.而数值有正数与负数,二进制只有0和1,如何表示负数,如何进行正负数的运算,这就是原反补的意义 ...