模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过

后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过

模版题:任意模数NTT


三模数NTT

常数巨大,跑的极慢


拆系数FFT

原理是对于两个多项式$ P=\sum\limits_{i=0}^{n-1}P_ix^i \ \ Q=\sum\limits_{i=0}^{m-1}Q_ix^i$

直接$ FFT$计算会发现值域达到$ 10^{23}$会炸精度

$ A=\sum\limits_{i=0}^{n-1}(P_i>>15)x^i \ \ B=\sum\limits_{i=0}^{n-1}(P_i\&32767)x^i$

$ C=\sum\limits_{i=0}^{m-1}(Q_i>>15)x^i \ \ D=\sum\limits_{i=0}^{m-1}(Q_i\&32767)x^i$

我们只要求$ (A*C)<<30,(B*C+A*D)<<15,B*D$这三项的和即可

设一次$ DFT/IDFT$为一次操作

暴力实现需要进行$ 8$次操作


精度问题

如果用$ k$次乘法计算$ w_n^k$会损失大量精度

需要利用三角函数预处理单位根,这样可以用$ double$代替$ long \ double$


优化

参考myy的2016年集训队论文

合并$DFT$

设我们要计算$ DFT_A$和$DFT_B$

令$$ P(x)=A(x)+iB(x) \\ Q(x)=A(x)-iB(x)$$

我们只要计算一次$ DFT_P$就可以推出$ DFT_Q$

推导请参考CMXRYNP'S Blog

$DFT_A[i]=\frac{DFT_P[i]+DFT_Q[i]}{2}$

$DFT_B[i]=\frac{DFT_P[i]-DFT_Q[i]}{2i}$

合并$IDFT$

同理

但这里甚至不需要求$ IDFT_Q$

事实上$IDFT_P$的实部和虚部分别对应$ IDFT_A$和$IDFT_B$

这样就把$ 8$次操作减少到$4$次了


代码

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define l putchar('\n')
#define file(x)freopen(x".in","r",stdin);freopen(x".out","w",stdout)
#define block 32768
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans,p;
namespace any_module_NTT{
vector<int>R;
const double PI=acos(-1.0);
struct cp{
double x,y;
cp operator +(const cp s)const{return {x+s.x,y+s.y};}
cp operator -(const cp s)const{return {x-s.x,y-s.y};}
cp operator *(const cp s)const{return {x*s.x-y*s.y,x*s.y+y*s.x};}
}w[][<<];
void FFT(const int n,vector<cp>&A){
A.resize(n);
for(rt i=;i<n;i++)if(i>R[i])swap(A[i],A[R[i]]);
for(rt i=,s=;i<n;i<<=,s++){
for(rt j=;j<n;j+=i<<){
for(rt k=;k<i;k++){
const register cp x=A[j+k],y=w[s][k]*A[i+j+k];
A[j+k]=x+y,A[i+j+k]=x-y;
}
}
}
}
vector<int>Mul(vector<int>&x,vector<int>&y){ int sz=x.size()+y.size()-,lim=;
while(lim<=sz)lim<<=;R.resize(lim);
for(rt i=;(<<i)<lim;i++)
for(rt j=;j<(<<i);j++)w[i][j]={cos(PI*j/(<<i)),sin(PI*j/(<<i))};
vector<cp>AB(lim),CD(lim),AC(lim),BC(lim);
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&)*(lim>>);
for(rt i=;i<x.size();i++)AB[i].x=((ll)x[i])&,AB[i].y=((ll)x[i])>>;
for(rt i=;i<y.size();i++)CD[i].x=((ll)y[i])&,CD[i].y=((ll)y[i])>>;
FFT(lim,AB);FFT(lim,CD);
for(rt i=;i<lim;i++){
static cp na,nb,nc,nd;const int pl=(lim-)&(lim-i);
na=AB[i]+(cp){AB[pl].x,-AB[pl].y},nb=AB[i]-(cp){AB[pl].x,-AB[pl].y};
nc=CD[i]+(cp){CD[pl].x,-CD[pl].y},nd=CD[i]-(cp){CD[pl].x,-CD[pl].y};
const cp v1={0.5,},v2={,-0.5};
na=na*v1;nb=nb*v2;nc=nc*v1;nd=nd*v2;
AC[pl]=na*nc+na*nd*(cp){,};
BC[pl]=nb*nc+nb*nd*(cp){,};
}
FFT(lim,AC);FFT(lim,BC);
vector<int>ans(sz);
for(rt i=;i<sz;i++){
ll v1=AC[i].x/lim+0.5,v2=AC[i].y/lim+BC[i].x/lim+0.5,v3=BC[i].y/lim+0.5;
ans[i]=(ll)((v3%p<<)+(v2%p<<)+v1)%p;
}
return ans;
}
}
using namespace any_module_NTT;
vector<int>A,B;
int main(){
n=read();A.resize(n+);m=read();B.resize(m+);p=read();
for(rt i=;i<=n;i++)A[i]=read();for(rt i=;i<=m;i++)B[i]=read();
A=Mul(A,B);
for(rt i=;i<=n+m;i++)write((A[i]+p)%p),putchar(' ');
return ;
}

拆系数FFT及其部分优化的更多相关文章

  1. 拆系数FFT

    学习内容:国家集训队2016论文 - 再谈快速傅里叶变换 模板题:http://uoj.ac/problem/34 1.基本介绍 对长度为L的\(A(x),B(x)\)进行DFT,可以利用 \[ \b ...

  2. 拆系数FFT(任意模数FFT)

    拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...

  3. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  4. 洛谷 4245 【模板】任意模数NTT——三模数NTT / 拆系数FFT

    题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long lon ...

  5. 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)

    题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...

  6. hdu6088 组合数+反演+拆系数fft

    题意:两个人van石头剪子布的游戏一共n盘,假设A赢了a盘,B赢了b盘,那么得分是gcd(a,b),求得分的期望*\(3^{2*n}\) 题解:根据题意很明显有\(ans=3^{n}*\sum_{a= ...

  7. 拆系数$FFT$($4$遍$DFT$)

    #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> ...

  8. 任意模数NTT和FFT的玄学优化学习笔记

    本来一直都是写\(7\)次的\(MTT\)的--然后被\(shadowice\)巨巨调教了一通之后只好去学一下\(4\)次的了-- 简单来说就是我们现在需要处理一类模数不为\(NTT\)模数的情况 这 ...

  9. C# 拆箱与装箱及优化

    1.概念 装箱在值类型向引用类型转换时发生,在堆中分配. 拆箱在引用类型向值类型转换时发生. 2.装箱拆箱的过程 //这行语句将整型常量1赋给object类型的变量obj:众所周知常量1是值类型,值类 ...

随机推荐

  1. Java中的CAS原理

    前言:在对AQS框架进行分析的过程中发现了很多CAS操作,因此有必要对CAS进行一个梳理,也便更清楚的了解其原理. 1.CAS是什么 CAS,是compare and swap的缩写,中文含义:比较交 ...

  2. 强大的scrollReveal库,炫酷的页面缓入效果。

    首先我问来看一下这个强大的插件能做出什么效果,下面是我找的一个网站: http://kepler.gl/#/, 接下来看看官网给出的效果:https://scrollrevealjs.org/. 是不 ...

  3. springboot在eclipse中运行使用开发配置,打包后运行使用生产环境默认配置

    java命令运行springboot jar文件,指定配置文件可使用如下两个参数中其中一个 --spring.config.location=配置文件路径 -Dspring.profiles.acti ...

  4. 1-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(来看一下怎么样监听网络数据,监听电脑上位机软件的数据)

    首先安装网络监听软件 运行这个软件 这个软件安装到电脑上,默认是监听咱电脑上的网络通信 咱们先监听电脑的软件的网络通信数据,然后再说怎么监听Wi-Fi和APP的软件的网络通信数据 咱就监听咱基础篇的 ...

  5. 【转】localStorage使用总结

    原文地址:https://www.cnblogs.com/st-leslie/p/5617130.html 一.什么是localStorage.sessionStorage 在HTML5中,新加入了一 ...

  6. 机智的造假->sql给Echart提供数据

    数据要求:要求数据随着上班时间的延长要递增,要看起来像真数据 declare @key int; declare cur_rate cursor for select keyID from #t1; ...

  7. Python--day01(计算机基础)

    Python: python 是一门面向后台的编程语言,在大数据,数据分析,机器学习,人工智能,爬虫,自动化运维,web等方面具有强大功能. 基础阶段学习内容:基本语法,文件处理,函数,模块,面向对象 ...

  8. 云计算openstack共享组件(3)——消息队列rabbitmq

    队列(MQ)概念: MQ 全称为 Message Queue, 消息队列( MQ ) 是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链 ...

  9. OracleSql语句学习(一)

    --SQL语句本身是不区分大小写的,每个关键字用空格隔开,为了增加可读性,退出所有关键字--全部大写,非关键字都小写SELECT SYSDATE FROM dual--创建表CREATE TABLE ...

  10. openstack搭建之-keystone配置(8)

    一. Base Node配置 mysql -uroot -proot CREATE DATABASE keystone GRANT ALL PRIVILEGES ON keystone.* to 'k ...