题目描述

小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙。

比如,时间回溯到了 2018 年 11 月 3 日。小 F 望着自己的任务清单:

看 iG 夺冠;

补月赛题的锅。

小 F 虽然经常咕咕咕,但他完成任务也是很厉害的,他一次性可以完成剩余任务的任一非空子集。比如,他现在可以选择以下几种中的一种:

看 iG 夺冠;

补月赛题的锅;

一边看 iG 夺冠的直播,一边补锅。

当然,比赛实在是太精彩了,所以小 F 就去看比赛了。

不过,当金雨从天而降、IG 举起奖杯之时,小 F 突然心生愧疚——锅还没补呢!于是,小 F 的内心产生了一点歉意。

这时小 F 注意到,自己总是在某些情况下会产生歉意。每当他要检查自己的任务表来决定下一项任务的时候,如果当前他干了某些事情,但是没干另一些事情,那么他就会产生一定量的歉意——比如,无论他今天看没看比赛,只要没有补完月赛的锅,他都会在选择任务的时候产生 11 点歉意。小 F 完成所有任务后,他这一天的歉意值等于他每次选择任务时的歉意之和。

过高的歉意值让小 F 感到不安。现在,小 F 告诉你他还有 \(n\) 项任务,并告诉你在 \(m\) 种情况中的一种 \(\mathrm{state}_i\) 的情况下,小 F 会产生 \(a_i\)​ 点歉意。请你帮忙计算一下,小 F 在那一天所有可能的完成所有任务方式的歉意值之和是多少.

由于答案可能很大,你只需要输出答案对 \(998244353\) 取模即可。

输入输出格式

输入格式:

输入一行两个整数 \(n, m\) 表示有 \(n\) 项任务,在 \(m\) 种情况中下小 F 会产生歉意值。

输入接下来 \(m\) 行,每行有一个长度为 \(n\) 的 \(0-1\) 串 $ \mathrm{state}_i $ 和一个歉意值 \(a_i ,\mathrm{state}_{i, j}\) 为 \(0/1\) 表示第 \(j\) 项任务此时没做 / 已经做了。

详情请参考样例和样例解释。

输出格式:

输出一行一个整数,表示小 F 在那一天所有可能的完成任务方式的歉意值之和对 \(998244353\) 取模的结果。

输入输出样例

输入样例#1:

2 2
00 1
10 1

输出样例#1:

4

输入样例#2:

3 4
000 16
001 9
110 4
111 1

输出样例#2:

260

说明

样例 1 解释:

$ 0−1 $ 串中第一个数字表示小 F 看没看比赛,第二个数字表示小 F 补没补锅。

我们用 $ \varnothing $ 表示小 F 什么都没干,$ A $ 表示小 F 看了比赛,$ B $ 表示小 F 补了锅,那么所有会产生愧疚的方式如下:

\(\varnothing: 1\)

\(\{A\}:1\)

那么所有可能的选择如下:

\(\varnothing\rightarrow\{A\}\rightarrow\{A,B\}:2\)

\(\varnothing\rightarrow\{B\}\rightarrow\{A,B\}:1\)

\(\varnothing\rightarrow\{A,B\}:1\)

所以答案是 \(2 + 1 + 1 = 4\)

数据范围

保证出现的 \(\mathrm{state}_i\)互不相同。

对于所有数据,有 $ 1 \leq n \leq 20, 1 \leq m \leq \min(2 ^ n, 10 ^ 5), 1 \leq a_i \leq 10 ^ 5$

本来想我这种蒟蒻是死活做不出来这种题的,结果听了讲评,最后是个组合数学,然后就差不多了

其实就是让你求从 $ n $ 个 $ 0 $ 到 $ n $ 个 $ 1 $ 的的方案嘛

然后它规定了某些01串有一定的权值,让你算,在上一个问题的基础上这些01串 出现次数*权值 的和

然后就考虑组合数学,因为一个串中如果01个数相同,那么这些串的出现次数也一样对吧

出现 $ i $ 个 $ 1 $ 就是 $ C_{n}^{i} $

设 $ f_i $ 表示出现 $ i $ 个 $ 1 $ 的方案数,有一点需要注意,出现了 $ i $ 个 $ 1 $ 的方案数就是出现了 $ n - i $ 个 $ 0 $ 的方案数

这个东西可以这么来递推:

$ f_i = \sum_{j = 1}^{i} f_{ i - j } \times C_{i}^{j}$

这个就是组合数学的基本意义....解释一下

你有 $ i $ 个 $ 1 $ 了,那么对于每一个 $ 1 $ 的出现次数小于 $ i $ 的状态都对你有贡献

这是第二层循环的由来,那么贡献是多少呢?就是在 $ 1 $ 较少的状态的 $ 0 $ 位填 $ 1 $ 使得它变成另一个状态的方案数

所以贡献是 $ f_{ i - j } \times C_{i}^{j} $

如果一个状态中出现了 $ k $ 个 $ 1 $ , 那么它的答案贡献就是 $ f_i $ 和 $ f_{ n - i } $ 为什么?

一个状态的方案可以用全0串到它的方案和它到全1串的方案作乘法得到(乘法原理)

然后对于每一个有权值的状态统计贡献累加和就行了

代码如下:

#include <iostream>
#include <cstdlib>
#include <cstdio>
#define LL long long const int N = 65 ;
const LL mod = 998244353 ; char s[50];
int n , m , cnt;
LL x , f[N] , Flag ;
LL ans , C[N][N]; inline void init(){
C[0][0] = 1 ;
for (int i = 1 ; i <= n + 1 ; ++ i)
for (int j = 0 ; j <= i ; ++ j)
C[i][j] = ( C[i - 1][j - 1] + C[i - 1][j] ) % mod ;
f[0] = 1 ;
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= i ; ++ j)
f[i] = ( f[i] + f[i - j] * C[i][j] ) % mod ;
return ;
} int main(){
scanf ("%d%d" , & n , & m ) ; init() ;
while (m --){
cnt = 0 ;
scanf ("%s%lld" , s + 1 , & x );
for (int i = 1 ; i <= n ; ++ i) if( s[i] == '1' ) ++ cnt ;
ans = ( ans + ( ( x * f[cnt] ) % mod * f[n - cnt] ) % mod ) % mod ;
}
printf("%lld\n" , ans % mod );
return 0;
}

LuoGu P4996 咕咕咕的更多相关文章

  1. (转)S5pv210 HDMI 接口在 Linux 3.0.8 驱动框架解析 (By liukun321 咕唧咕唧)

    作者:liukun321 咕唧咕唧 日期:2014.1.18 转载请标明作者.出处:http://blog.csdn.net/liukun321/article/details/18452663 本文 ...

  2. u-boot for tiny210 ver1.0(by liukun321咕唧咕唧)

     新版本下载: 下面的链接提供了较新版本的源码 ver4.0源码下载:u-boot for tiny210 ver4.0 ver3.1源码下载: u-boot for tiny210 ver3.1 v ...

  3. linux多线程驱动中调用udelay()对整个系统造成的影响(by liukun321咕唧咕唧)

    以前没考虑过这个问题,而且之前可能运气比较好,虽然用了udelay但也没出什么奇怪的问题,今天在 CSDN上看到了一篇关于此问题帖子,觉得很受用,再此做简要的记录和分析: 驱动开的是内核线程 跟普通进 ...

  4. 基于S5pv210流媒体server的实现之网络摄像头(by liukun321 咕唧咕唧)

    这里仅介绍流媒体server端的实现思路.及编码注意问题,不会贴代码的详细实现. 直接入正题先介绍一下系统硬件框架: server端连接PC机用VLC播放例如以下图: server端应用程序能够分为图 ...

  5. FT5X06 如何应用在10寸电容屏(linux-3.5电容屏驱动简析&移植10寸电容屏驱动到Android4.2) (by liukun321咕唧咕唧)

    这是几个月以前的东西了,在彻底遗忘之前拿出来好好写写.做个笔记,也算是造福后来人了.在做这个项目之前,没有做过电容屏的驱动,印象中的电容触摸屏是不需要校正的.IC支持多大的屏就要配多大的屏.但是拿到需 ...

  6. 「P4996」「洛谷11月月赛」 咕咕咕(数论

    题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...

  7. 【组合数学】【P4996】 咕咕咕

    Description 小 F 注意到,自己总是在某些情况下会产生歉意.每当他要检查自己的任务表来决定下一项任务的时候,如果当前他干了某些事情,但是没干另一些事情,那么他就会产生一定量的歉意--比如, ...

  8. $vjudge-dp$专题题解

    因为感觉题解写不了多少,,,就懒得一道道题目慢慢写了,汇总了算了$QAQ$ 昂然后因为我估计以后还会有些什么$dp$专题啊$balabala$的,,,然后谢总肯定又会建一堆小组啥的,,,所以还是放个链 ...

  9. [zt]给你的Mp4大换血,精选Touch里3年收集的900多首歌,"经典不忍去的""最新近流行的",与你共享~~

    如果你是音乐爱好者: 这些歌, 请戴上耳机, 调大音量, 一个人听 ,全世界 都是你的!!!!! (一)这些歌很温暖,没有金属味,适合有阳光的午后,很悠闲... [Anaesthesia]Maximi ...

随机推荐

  1. centos6.8 配置mysql赋予mysql远程连接权限

    1.关掉防火墙 2.检查3306端口是否开放 3.修改用户用户权限 GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '您的数据库密码' ...

  2. Sublime怎么安装Package control组件

    Sublime怎么安装Package control组件 藏色散人 藏色散人 2018-11-26 14:30:51 原创 Sorry, your browser does not support e ...

  3. Java 找出四位数的所有吸血鬼数字 基础代码实例

    /**  * 找出四位数的所有吸血鬼数字  * 吸血鬼数字是指位数为偶数的数字,可以由一对数字相乘而得到,而这对数字各包含乘积的一半位数的数字,其中从最初的数字中选取的数字可以任意排序.  * 以两个 ...

  4. pm2自动部署

    配置pm2自动部署前,请确保已经能够ssh免密登录服务器. 一.创建ecosystem.json { "apps" : [{ "name" : "HT ...

  5. Win10修改编辑文件无法保存怎么办(没有权限)

    Win10修改编辑hosts文件无法保存怎么办 修改一些系统文件无法保存说明这个账户没有“写”这个权限 这里以hosts文件为例,为账户增加读写权限: 首先进入Win10系统的hosts文件所在位置 ...

  6. Linux grep \t Tab 键失效

    解决方法 1.'$' 有一个日志文件, 比如说有两列, 中间使用 \t制表符分割了.   则在grep查找的时候 使用: '$'\t''\+  代替我们的\t制表符 - 2.-P grep -P '\ ...

  7. Docker:常用命令大全 [七]

    一.docker的命令的解释 1.命令解释 docker run -d -p 80:80 nginx run (创建并运行一个容器) -d 放在后台 -p 端口映射 nginx docker镜像的名字 ...

  8. VMware 设置网络

    在VMware上安装 系统完成后,设置虚拟网络 这里的VMware 版本为 14. 本文以window server 2016 为例. 在虚拟机上菜单栏中, 编辑  >> 虚拟网络编辑器 ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 F Features Track(STL模拟)

    https://nanti.jisuanke.com/t/31458 题意 有N个帧,每帧有K个动作特征,每个特征用一个向量表示(x,y).两个特征相同当且仅当他们在不同的帧中出现且向量的两个分量分别 ...

  10. [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

    试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...