P3355 骑士共存问题

题目描述

在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入

对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击

Solution

二分图最大独立集

骑士共存是这个的经典模型

两个点互相干涉的点只能取其一

定理: 二分图的最大独立集为其点数减去最大匹配数

证明:

最大独立集: 最多互不干涉的点

\(\Rightarrow\) 选出最少的点使得剩下的互不干涉

\(\Rightarrow\) 选出最多的点覆盖所有干涉边

而最小点覆盖 \(=\) 最大匹配数

故成立

证毕。

类似棋盘覆盖问题, 我们将棋盘黑白染色

发现此点与干涉点属于不同的颜色

故有干涉关系的连边做二分图最大匹配即可

此题卡匈牙利算法, 使用最大流

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 419, maxv = 1000019, INF = 1e9 + 19;
int head[maxn * maxn],nume = 1;
struct Node{
int v,dis,nxt;
}E[maxv << 3];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int len, num;
int map[maxn][maxn];
int mx[8] = {-2,-1, 1, 2, 2, 1,-1,-2};
int my[8] = {-1,-2,-2,-1, 1, 2, 2, 1};
bool judge(int x, int y){
if(x < 1 || x > len || y < 1 || y > len)return 0;
return 1;
}
int id(int x, int y){return (x - 1) * len + y;}
int s, t, maxflow;
int d[maxn * maxn];
bool bfs(){
queue<int>Q;
memset(d, 0, sizeof(d));
d[s] = 1;
Q.push(s);
while(!Q.empty()){
int u = Q.front();Q.pop();
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
if(!d[v] && E[i].dis){
d[v] = d[u] + 1;
Q.push(v);
if(v == t)return 1;
}
}
}
return 0;
}
int Dinic(int u, int flow){
if(u == t)return flow;
int rest = flow, k;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
if(d[v] == d[u] + 1 && E[i].dis){
k = Dinic(v, min(rest, E[i].dis));
if(!k)d[v] = 0;
E[i].dis -= k;
E[i ^ 1].dis += k;
rest -= k;
if(!rest)break;
}
}
return flow - rest;
}
int main(){
len = RD(), num = RD();
s = 0, t = maxn * maxn - 19;
REP(i, 1, num){
int x = RD(), y = RD();
map[x][y] = 1;
}
REP(i, 1, len)REP(j ,1, len){
if(map[i][j])continue;
int now = id(i, j);
if((i + j) % 2 == 1)add(s, now, 1), add(now, s, 0);
else add(now, t, 1), add(t, now, 0);
}
REP(i, 1, len)REP(j ,1, len){
if(map[i][j] || (i + j) % 2 == 0)continue;
int u = id(i ,j);
for(int k = 0;k < 8;k++){
int nx = i + mx[k];
int ny = j + my[k];
if(!judge(nx, ny))continue;
if(map[nx][ny])continue;
int v = id(nx, ny);
add(u, v, 1), add(v, u, 0);
}
}
int flow = 0;
while(bfs())while(flow = Dinic(s, INF))maxflow += flow;
printf("%d\n",len * len - maxflow - num);
return 0;
}

P3355 骑士共存问题的更多相关文章

  1. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  2. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  3. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  4. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  5. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  6. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

  7. LUOGU P3355 骑士共存问题(二分图最大独立集)

    传送门 因为骑士只能走"日"字,所以一定是从一个奇点到偶点或偶点到奇点,那么这就是一张二分图,题目要求的其实就是二分图的最大独立集.最大独立集=n-最大匹配. #include&l ...

  8. 洛谷 [P3355] 骑士共存问题

    二分图求最大独立点集 本问题在二分图中已处理过,此处用dinic写了一遍 #include <iostream> #include <cstdio> #include < ...

  9. Luogu P3355 骑士共存问题

    题目链接 \(Click\) \(Here\) 二分图最大独立集.对任意两个可以相互攻击的点,我们可以选其中一个.对于不会互相攻击的,可以全部选中.所以我们只需要求出最大匹配,根据定理,二分图最大独立 ...

随机推荐

  1. 面向对象OO第5-7次作业总结

    面向对象OO第5-7次作业总结 学习OO七周了,深切的感受到了这门课程的不友好.前三次作业能够算是勉强地通过了,但是从第五次作业开始就完全GG了.这三次作业,从多线程电梯开始,然后文件监控,然后到出租 ...

  2. 第二阶段每日站立会议Second Day

    昨天我在手机端安装cpp后进行界面效果测试以及进一步完善 今天对图片显示的大小进行调整 遇到的问题:当图片太小时,显示一块灰色区域,不美观

  3. TCP/IP,HTTP,HTTPS,WEBSocket协议

    我看看着挺多的,我暂时没时间自己写,有需要的请借鉴 http://mp.weixin.qq.com/s?__biz=MzI0MDQ4MTM5NQ==&mid=2247486927&id ...

  4. python learning Network Programming.py

    Socket # 用一个 Socke t表示"打开了一个网络连接" # 打开一个 Socket 需要知道目标计算机的IP地址和端口号,再指定协议类型即可. # TCP # 主动发起 ...

  5. java集合LinkedList

    基于jdk_1.8.0 关于List,主要是有序的可重复的数据结构.jdk主要实现类有ArrayList(底层使用数组).LinkedList(底层使用双向链表) LinkedList: (一)继承关 ...

  6. 全选练习-原生版和jQuery

    今天来做一些练习,做全选练习 原生版的实现: <!DOCTYPE html> <html> <head> <meta charset="UTF-8& ...

  7. jmeter 多线程组间变量共享

    jmeter的线程组之间是相互独立的,各个线程组互不影响,所以线程组A中输出的参数,是无法直接在线程组B中被调用的. 但是有时为了方便管理,我们可能是把各个接口单独存放在不同的线程组中.拿Cookie ...

  8. MSTSC 修改端口的简单方法 3389

    1. 3389端口太过危险  最简单的办法是 修改默认端口方法非常简单. 2. win+r 打开运行, 输入 regedit 打开 注册表 3. 在地址栏输入 远程的服务的路径 输入的内容为: 计算机 ...

  9. JS 随机整数

    <script>   function GetRandomNum(Min,Max){   var Range = Max - Min;   var Rand = Math.random() ...

  10. [MYSQL] 如何彻底卸载MYSQL5.x

    找了这么久,只有这个可以完全卸载~~~,转自http://www.doc88.com/p-9435498025667.html