TOYS

Time Limit: 2000MS Memory Limit: 65536K

Description

Calculate the number of toys that land in each bin of a partitioned toy box.

Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John’s parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0

3 1

4 3

6 8

10 10

15 30

1 5

2 1

2 8

5 5

40 10

7 9

4 10 0 10 100 0

20 20

40 40

60 60

80 80

5 10

15 10

25 10

35 10

45 10

55 10

65 10

75 10

85 10

95 10

0

Sample Output

0: 2

1: 1

2: 1

3: 1

4: 0

5: 1

0: 2

1: 2

2: 2

3: 2

4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are “in” the box.

Source

Rocky Mountain 2003

这是一道基础的计算几何,就是让你计算用线段分出的不规则图形的区域中分别有几个点。这题我们直接二分答案,如果点在当前第mid" role="presentation" style="position: relative;">midmid条线段的左边,那么我们移动右指针,否则我们移动左指针。怎么判断方向呢?直接使用向量的叉积来判断就可以了。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 5005
using namespace std;
struct pot{
    int x,y;
};
struct line{pot a,b;}l[N];
int n,m,cnt[N];
int x1,x2,y1,y2;
inline int cross(pot a,pot b){return a.x*b.y-a.y*b.x;}
inline bool dir(int k,pot p){
    pot a,b;
    a.x=l[k].a.x-p.x,a.y=l[k].a.y-p.y;
    b.x=l[k].b.x-p.x,b.y=l[k].b.y-p.y;
    return cross(a,b)>0;
}
inline int search(pot p){
    int l=1,r=n,ret;
    while(l<=r){
        int mid=(l+r>>1);
        if(dir(mid,p))l=mid+1;
        else r=mid-1;
    }
    return r;
}
int main(){
    while(scanf("%d",&n)){
        if(n==0)break;
        memset(cnt,0,sizeof(cnt));
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        for(int i=1;i<=n;++i){
            l[i].a.y=y1,l[i].b.y=y2;
            scanf("%d%d",&l[i].a.x,&l[i].b.x);
        }
        for(int i=1;i<=m;++i){
            pot p;
            scanf("%d%d",&p.x,&p.y);
            ++cnt[search(p)];
        }
        for(int i=0;i<=n;++i)printf("%d: %d\n",i,cnt[i]);
        puts("");
    }
    return 0;
}

2018.07.03 POJ 2318 TOYS(二分+简单计算几何)的更多相关文章

  1. 2018.07.04 POJ 1654 Area(简单计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...

  2. 2018.07.04 POJ 3304 Segments(简单计算几何)

    Segments Time Limit: 1000MS Memory Limit: 65536K Description Given n segments in the two dimensional ...

  3. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  4. 2018.07.03 POJ 2653 Pick-up sticks(简单计算几何)

    Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Description Stan has n sticks of various leng ...

  5. 2018.07.03 POJ 1279Art Gallery(半平面交)

    Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...

  6. POJ 2318 TOYS | 二分+判断点在多边形内

    题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...

  7. 2018.07.03 POJ 3348 Cows(凸包)

    Cows Time Limit: 2000MS Memory Limit: 65536K Description Your friend to the south is interested in b ...

  8. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  9. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

随机推荐

  1. 门禁系统socket通讯编程

    最近遇到一个socke udp协议通讯的需求,而且是16进制数据接收.这样在传输参数的时候老是提示参数错误,因为计算机是不能直接传输16进制的,会自行转换,所有以下代码非常完美的解决我的问题,同时也让 ...

  2. WDA-文档-基础篇/进阶篇/讨论篇

    本文介绍SAP官方Dynpro开发文档NET310,以及资深开发顾问编写的完整教程.   链接:http://pan.baidu.com/s/1eR9axpg 密码:kf5m NET310 ABAP ...

  3. EF时间模糊查询

    public List<Vote> SelectVoteByTime(string time) { return db.Vote.ToList().Where(x => x.V_Be ...

  4. Shell常用命令find、grep总结

    一.find 命令 find 命令的常用形式可以简化为 find [path...][expression] path:find 命令查找的目录路径,其中 ./ 表示当前目录,/ 表示系统根目录 ex ...

  5. China cuts bank reserves by $100m to cushion US tariffs

    China cuts bank reserves by $100m to cushion US tariffs中国央行定向降准释放千亿美元资金China is cutting the amount o ...

  6. GitLab CI 之 Java HelloWrold

    问题描述 测试人员想在gitalb上跑 JUnit项目,也就是java代码. 听到这个之后,我当时都懵了,我他妈gitlab的runner是为运行.net core 安装的呀.后来一想,是我错了,我用 ...

  7. 实现spring IOC的常见二种方法 setter注入与构造器注入

    案例: beans.xml配置 <?xml version="1.0" encoding="UTF-8"?><beansxmlns=" ...

  8. mydqldump

    [mydqldump] One way to create a snapshot of the data in an existing master database is to use the my ...

  9. SSL原理分析

    SSL协议的工作流程: 服务器认证阶段:       1)客户端向服务器发送一个开始信息“Hello”以便开始一个新的会话连接:      2)服务器根据客户的信息确定是否需要生成新的主密钥,如需要则 ...

  10. Android中WebView使用全解

    开始 在Android系统中内嵌的WebKit,这是一个浏览器内核,它帮助着我们可以浏览网页.在实际开发中,如果你想让你的App能够访问网页,那就需要用到WebView这个控件. 如何使用? 其实使用 ...