Python之Pandas中Series、DataFrame
Python之Pandas中Series、DataFrame实践
1. pandas的数据结构Series
1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。
1.2 Series的字符串表现形式为:索引在左边,值在右边。
2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值的)。
dataframe中的数据是以一个或者多个二位块存放的(而不是列表、字典或者别的一维数据结构)。
3.索引对象
pandas的索引对象负责管理轴标签和其他元素(比如轴名称等)。构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index。
Index对象是不可修改的。
4. pandas的主要Index对象
Index 最泛化的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组
Int64Index 针对整数的特殊Index
MultiIndex “层次化”索引对象,表示单个轴上的多层索引。可以看做由元数组组成的数组
DatetimeIndex 存储纳秒级时间戳(用NumPy的datetime64类型表示)
PeriodIndex 针对Period数据(时间间隔)的特殊Index
5. 操作Series和DataFrame中的数据的基本手段
5.1 重新索引 reindex
5.2 丢弃指定轴上的项 drop
5.3 索引、选取和过滤(.ix)
5.4 算数运算和数据对齐
DataFrame和Series之间的算数运算默认情况下会将Series的索引项 匹配到DataFrame的列,然后沿着行一直向下广播。(如果希望匹配行且在列上广播,则必须使用算数运算方法)
6. 函数应用和映射
NumPy的ufuncs(元素级数组方法)也可用操作pandas对象
DataFrame中将函数应用到由各列或各行所行成的一维数组上可用apply方法。
7. 排序和排名
要对行或列索引进行排序(按字典顺序),可使用sort_index方法,它将返回一个已排序的新对象;对于DataFrame,则可以根据任意一个轴上的索引进行排序。
8. 汇总和计算描述统计
8.1 相关系数corr与协方差cov
8.2 成员资格isin,用于判断矢量化集合的成员资格,可用于选取Series或DataFrame列数据的子集。
9. 处理缺失数据(Missing data)
9.1 pandas使用浮点值NaN(Not a Number)表示浮点和非浮点数组中的缺失数据。
9.2 NA处理办法
dropna 根据各标签值中是否存在缺失数据对轴标签进行过滤,可通过阀值调节对缺失值的容忍度
fillna 用指定的或插值方法(如ffil或bfill)填充缺失数据
isnull 返回一个含有布尔值的对象,这些布尔值表示哪些值是缺失值/NA,该对象的类型与源类型一样
notnull isnull的否定式
10. 层次化索引
层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它是你能以低维度形式处
Python之Pandas中Series、DataFrame的更多相关文章
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- python数据分析pandas中的DataFrame数据清洗
pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列 ...
- Pandas 之 Series / DataFrame 初识
import numpy as np import pandas as pd Pandas will be a major tool of interest throughout(贯穿) much o ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- python – 基于pandas中的列中的值从DataFrame中选择行
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...
- pandas中遍历dataframe的每一个元素
假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字 那么可以用python的pandas库来实现. 方法一: pandas的dataframe有一个很好用的 ...
- Pandas之Series+DataFrame
Series是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,python对象) index查看series索引,values查看series值 series相比于ndarray,是一 ...
- pandas中Series对象下的str所拥有的方法(df["xx"].str)
在使用pandas的时候,经常要对DataFrame的某一列进行操作,一般都会使用df["xx"].str下的方法,但是都有哪些方法呢?我们下面来罗列并演示一下.既然是df[&qu ...
- [Python] Pandas 中 Series 和 DataFrame 的用法笔记
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...
随机推荐
- ABAP-索引
转载:http://blog.sina.com.cn/s/blog_498610450101kbxl.html tables: csks. start-of-selection. select * u ...
- centoros 环境安装
1. nginx rpm -ivh http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx.no ...
- Java web struct入门基础知识
1.Struts2的前身是Opensymphony的Webwork2,实际上Strut和Webwork2合并后形成Struts2. 2.一个HelloWord示例 1)创建Web应用,所需要的Ja ...
- RESTORE 无法处理数据库 'Students',因为它正由此会话使用。建议在执行此操作时使用 master 数据库。
恢复数据库是总弹出报错对话框如下:RESTORE 无法处理数据库 'Students',因为它正由此会话使用.建议在执行此操作时使用 master 数据库.RESTORE DATABASE 正在异常终 ...
- 利用Spark-mllab进行聚类,分类,回归分析的代码实现(python)
Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中 ...
- 【Java】JVM(六)虚拟机字节码执行引擎
一.概述 执行引擎是虚拟机中最核心的部分之一, 虚拟机自己实现引擎,自己定义指令集和执行引擎的结构体系. 二.栈帧 栈帧包含(1)局部变量表.(2)操作数栈.(3)动态链接.(4)方法返回地址.(5) ...
- JDBC远程连接数据库
使用jdbc远程连接数据库(非本地数据库)出现的问题可用的解决方法: 1.修改mysql配置文件 配置文件中注释掉 bind-address=127.0.0.1 2.修改数据库 登入mysql后,更改 ...
- Node.js的知识点框架整理
背景:因为appium是基于Node.js的,所以想看一下Node.js.但是发现很多资料的顺序看起来有点颠倒.然后就一面看资料一面整理了一下大概的知识点框架,希望对自己对别人有用. 本文不包含nod ...
- The partial charge density (1)
============================================================================================= The pa ...
- (动态规划)有 n 个学生站成一排,每个学生有一个能力值,从这 n 个学生中按照顺序选取kk 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 kk 个学生的能力值的乘积最大,返回最大的乘积
第2关:最强战队 挑战任务 绿盟和各大名企合作,举办编程能力大赛,需要选拔一支参赛队伍.队伍成员全部来自“绿盟杯”中表现优秀的同学,每个同学都根据在比赛中的表现被赋予了一个能力值.现在被召集的N个同学 ...