4-2 R语言函数 apply
#apply函数,沿着数组的某一维度处理数据
#例如将函数用于矩阵的行或列
#与for/while循环的效率相似,但只用一句话可以完成
#apply(参数):apply(数组,维度,函数/函数名)
> x <- matrix(1:16,4,4)
> x
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
> apply(x,2,mean) #沿着x的第二维度求平均,x有两个维度,行和列,第二个维度就是沿着x的列求平均
[1] 2.5 6.5 10.5 14.5
> apply(x,2,sum) #沿着x的第二维度求和
[1] 10 26 42 58
> apply(x,1,sum)
[1] 28 32 36 40
> apply(x,1,mean)
[1] 7 8 9 10
> rowSums(x) #行的总和
[1] 28 32 36 40
> rowMeans(x) #行的平均值
[1] 7 8 9 10
> colSums(x) #列的总和
[1] 10 26 42 58
> colMeans(x) #列的平均值
[1] 2.5 6.5 10.5 14.5
> x <- matrix(rnorm(100),10,10) #随机从正态分布中取100个数据
> x
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.6028508 1.4642242 0.04427663 0.2871729 0.04981660 -0.8558895 0.5130530
[2,] -1.9378240 0.2039535 -0.19909385 -0.4309858 0.85004373 0.4976094 -0.5580487
[3,] 1.2487024 0.3279828 -0.61134011 -0.1575374 -0.29225789 0.3887533 0.3905769
[4,] -2.5628573 0.4519969 -0.31849107 -1.4633238 0.46414326 0.3366307 -2.1061818
[5,] -0.2568173 -0.7387934 -0.65190045 -1.5211132 -0.68554516 0.3329140 -1.3744196
[6,] -0.3072326 -1.2575338 0.42412478 -1.3476506 -0.21221874 0.7673182 -0.4560506
[7,] 0.1561480 0.3020903 0.36489259 -0.2507313 1.35735729 -0.2610940 0.5355151
[8,] 0.6536334 0.3717443 -0.77679094 1.0801878 0.07262787 -0.5006976 -2.6058038
[9,] 1.4417755 -1.2989872 1.04908993 0.5010024 -0.41921218 2.2141514 0.3646026
[10,] -1.6978768 -0.9097784 0.01689380 0.6535433 1.55588778 0.4550700 2.5595517
[,8] [,9] [,10]
[1,] -0.57296509 0.1170718 -1.89788063
[2,] 0.06360181 1.3552013 0.83369280
[3,] -0.44550756 0.3857978 0.24664750
[4,] 0.51678695 0.2522804 -0.77862862
[5,] 0.35021885 -0.2767039 -0.37358325
[6,] -0.12660675 -1.4168734 0.86864076
[7,] 0.69927317 0.6202195 -2.31017158
[8,] 1.43228754 1.3257759 0.59362053
[9,] -1.63696656 0.3467712 0.72186091
[10,] -1.02416667 -1.7024939 0.03971799
#解释:
#x赋值函数中的2*3*4分别对应行*列*组(相对应的维度即为1*2*3
#apply(x,c(1,2),mean)中1,2对应的维度为行*列,不需要考虑组,所以对每组相同位置的所有元素相加后求平均,因此输出的结果为2行3列的矩阵
#同理,apply(x,c(1,3),mean)中1,3对应的维度为行*组,所以分别对每组中的行求平均,因此输出的结果为2行4列的矩阵(x中有4个组,每组中有2行)
#同理,(2,3)就代表列*组了~
> apply(x,1,quantile,probs=c(0.25,0.75)) #quantile求数据的百分位点,可通过probs=c()进行分配
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
25% -0.5953794 -0.3730128 -0.2585778 -1.2921500 -0.7254813 -1.0571630 -0.1490114
75% 0.2446476 0.7496719 0.3880144 0.4231553 -0.2617889 0.2864419 0.5990434
[,8] [,9] [,10]
25% -0.3573663 -0.2277163 -0.9955696
75% 0.9735492 0.9672827 0.6039250
> x <- array(rnorm(2*3*4),c(2,3,4))#表示随机从正太分布中抽取出来的24个数据,按照三维排列出来。
> x
, , 1
[,1] [,2] [,3]
[1,] -0.6055074 0.1428984 -0.9020732
[2,] -0.6947868 1.3597884 0.8797562
, , 2
[,1] [,2] [,3]
[1,] -0.3114873 -2.3184400 0.4499677
[2,] 0.1497819 0.1295499 -1.6927436
, , 3
[,1] [,2] [,3]
[1,] 0.9606359 1.3313254 -0.60785734
[2,] 0.7255531 -0.1389708 -0.02877733
, , 4
[,1] [,2] [,3]
[1,] 0.0279858 0.9007448 0.1251860
[2,] 0.5111250 -0.4223850 -0.6083399
> apply(x,c(1,2),mean) #以第1及第2维为基础,沿第3方向压成平面
[,1] [,2] [,3]
[1,] 0.01790675 0.01413214 -0.2336942
[2,] 0.17291831 0.23199563 -0.3625262
> apply(x,c(1,3),mean)
[,1] [,2] [,3] [,4]
[1,] -0.4548941 -0.7266532 0.561368 0.3513056
[2,] 0.5149192 -0.4711373 0.185935 -0.1732000
> apply(x,c(2,3),mean)
[,1] [,2] [,3] [,4]
[1,] -0.6501471 -0.08085267 0.8430945 0.2695554
[2,] 0.7513434 -1.09444509 0.5961773 0.2391799
[3,] -0.0111585 -0.62138791 -0.3183173 -0.2415770
4-2 R语言函数 apply的更多相关文章
- R语言函数化学习笔记6
R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...
- R语言函数化学习笔记3
R语言函数化学习笔记3 R语言常用的一些命令函数 1.getwd()查看当前R的工作目录 2.setwd()修改当前工作目录 3.str()可以输出指定对象的结构(类型,位置等),同理还有class( ...
- R语言函数化编程笔记2
R语言函数化编程笔记2 我学过很多的编程语言,可以我写的代码很啰嗦,一定是我太懒了.或许是基础不牢地动山摇 1.为什么要学函数 函数可以简化编程语言,减少重复代码或者说面向对象的作用 2.函数 2.1 ...
- R语言函数化编程笔记1
R语言函数化编程笔记1 notes:有一个不错的网站叫做stack overflow,有问题可以从上面找或者搜索答案,会有大佬相助. 在github上面可以找到很多R的扩展包,如果自己额修改被接受,那 ...
- R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...
- r语言 函数
R语言实际上是函数的集合,用户可以使用base,stats等包中的基本函数,也可以自己编写函数完成一定的功能.但是初学者往往认为编写R函数十分困难,或者难以理解.这里对如何编写R函数进行简要的介绍. ...
- 【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...
- 【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头, ...
- R语言︱函数使用技巧(循环、if族/for、switch、repeat、ifelse、stopifnot)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 后续加更内容: 应用一:if族有哪些成员呢?- ...
随机推荐
- ubuntu上使用vim编辑文本内容
1. 什么是 vim? Vim是从 vi 发展出来的一个文本编辑器.代码补完.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用.简单的来说, vi 是老式的字处理器,不过功能已经很齐全了, ...
- 922-按奇偶校验排序数组II
给定一组A 非负整数,A中的一半整数是奇数,而整数的一半是偶数. 对数组进行排序,以便每当A[i]奇数时,i都是奇数; 无论何时A[i]均匀,i均匀. 您可以返回满足此条件的任何答案数组. 例1: 输 ...
- 有序的数据结构中:内存操作红黑树快,磁盘操作b+树快
红黑树常用于存储内存中的有序数据,增删很快,b+树常用于文件系统和数据库索引,因为b树的子节点大于红黑树,红黑树只能有2个子节点,b树子节点大于2,子节点树多这一特点保证了存储相同大小的数据,树的高度 ...
- Messenger与AIDL的异同
Messenger与AIDL的异同 最近做项目需要使用进程间通信,大家知道应用层的进程间通信无非Broadcast,Activity,Service,Content Provider四大组件.Broa ...
- Jquery实现form表单提交后局部刷新页面的多种方法
最近做一个小项目,刚好需要用到搜索功能,实现搜索框内输入数据然后按回车或者点击“提交”,然后给后台数据库处理并返回数据给前端,在前端局部更新数据. 但是遇到了一个小问题,就是form表单下任意输入框输 ...
- MVC 中文显示乱码问题
在学习中遇到中文乱码的问题,在网上搜了一下大神的解决方法,总结了一点知识点. 项目中的代码 //GET: /HelloWorld/Welcome/ public string Welcome(stri ...
- 【转发】【小程序】微信小程序日常开发中常遇到的错误代码
还在为看不懂小程序错误状态码纠结吗?这里推荐一篇文章 重要的事情说三遍:原文链接 https://www.cnblogs.com/webonline/p/7528778.html 作者:玩世不恭. ...
- input文字垂直居中和按钮对齐问题,兼容IE8
1.盒子模型问题:请CSS重置 2.按钮不对齐:请浮动或者vertical-align:middle;然后计算宽高,使其对齐 : 3.IE8文本不居中:line-height属性 注意:IE8 ...
- Android Studio cannot resolve symbols
引入了第三方类库,不管怎么编译 clean 都找多到类库 关闭重新打开android studio就好了.....
- linux 搜索文件内容并输出命令 grep、-i、-v ^#
grep /bin/grepgrep -iv [指定字条串] [文件]在文件中搜索字符串匹配的行并输出-i 不区分大小写 -v 排除指定字符串 grep -i java /etc/profile gr ...