#apply函数,沿着数组的某一维度处理数据
#例如将函数用于矩阵的行或列
#与for/while循环的效率相似,但只用一句话可以完成
#apply(参数):apply(数组,维度,函数/函数名) > x <- matrix(1:16,4,4)
> x
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16 > apply(x,2,mean) #沿着x的第二维度求平均,x有两个维度,行和列,第二个维度就是沿着x的列求平均
[1] 2.5 6.5 10.5 14.5 > apply(x,2,sum) #沿着x的第二维度求和
[1] 10 26 42 58 > apply(x,1,sum)
[1] 28 32 36 40 > apply(x,1,mean)
[1] 7 8 9 10 > rowSums(x) #行的总和
[1] 28 32 36 40 > rowMeans(x) #行的平均值
[1] 7 8 9 10 > colSums(x) #列的总和
[1] 10 26 42 58 > colMeans(x) #列的平均值
[1] 2.5 6.5 10.5 14.5 > x <- matrix(rnorm(100),10,10) #随机从正态分布中取100个数据
> x
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.6028508 1.4642242 0.04427663 0.2871729 0.04981660 -0.8558895 0.5130530
[2,] -1.9378240 0.2039535 -0.19909385 -0.4309858 0.85004373 0.4976094 -0.5580487
[3,] 1.2487024 0.3279828 -0.61134011 -0.1575374 -0.29225789 0.3887533 0.3905769
[4,] -2.5628573 0.4519969 -0.31849107 -1.4633238 0.46414326 0.3366307 -2.1061818
[5,] -0.2568173 -0.7387934 -0.65190045 -1.5211132 -0.68554516 0.3329140 -1.3744196
[6,] -0.3072326 -1.2575338 0.42412478 -1.3476506 -0.21221874 0.7673182 -0.4560506
[7,] 0.1561480 0.3020903 0.36489259 -0.2507313 1.35735729 -0.2610940 0.5355151
[8,] 0.6536334 0.3717443 -0.77679094 1.0801878 0.07262787 -0.5006976 -2.6058038
[9,] 1.4417755 -1.2989872 1.04908993 0.5010024 -0.41921218 2.2141514 0.3646026
[10,] -1.6978768 -0.9097784 0.01689380 0.6535433 1.55588778 0.4550700 2.5595517
[,8] [,9] [,10]
[1,] -0.57296509 0.1170718 -1.89788063
[2,] 0.06360181 1.3552013 0.83369280
[3,] -0.44550756 0.3857978 0.24664750
[4,] 0.51678695 0.2522804 -0.77862862
[5,] 0.35021885 -0.2767039 -0.37358325
[6,] -0.12660675 -1.4168734 0.86864076
[7,] 0.69927317 0.6202195 -2.31017158
[8,] 1.43228754 1.3257759 0.59362053
[9,] -1.63696656 0.3467712 0.72186091
[10,] -1.02416667 -1.7024939 0.03971799 #解释:
#x赋值函数中的2*3*4分别对应行*列*组(相对应的维度即为1*2*3
#apply(x,c(1,2),mean)中1,2对应的维度为行*列,不需要考虑组,所以对每组相同位置的所有元素相加后求平均,因此输出的结果为2行3列的矩阵
#同理,apply(x,c(1,3),mean)中1,3对应的维度为行*组,所以分别对每组中的行求平均,因此输出的结果为2行4列的矩阵(x中有4个组,每组中有2行)
#同理,(2,3)就代表列*组了~ > apply(x,1,quantile,probs=c(0.25,0.75)) #quantile求数据的百分位点,可通过probs=c()进行分配
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
25% -0.5953794 -0.3730128 -0.2585778 -1.2921500 -0.7254813 -1.0571630 -0.1490114
75% 0.2446476 0.7496719 0.3880144 0.4231553 -0.2617889 0.2864419 0.5990434
[,8] [,9] [,10]
25% -0.3573663 -0.2277163 -0.9955696
75% 0.9735492 0.9672827 0.6039250 > x <- array(rnorm(2*3*4),c(2,3,4))#表示随机从正太分布中抽取出来的24个数据,按照三维排列出来。
> x
, , 1 [,1] [,2] [,3]
[1,] -0.6055074 0.1428984 -0.9020732
[2,] -0.6947868 1.3597884 0.8797562 , , 2 [,1] [,2] [,3]
[1,] -0.3114873 -2.3184400 0.4499677
[2,] 0.1497819 0.1295499 -1.6927436 , , 3 [,1] [,2] [,3]
[1,] 0.9606359 1.3313254 -0.60785734
[2,] 0.7255531 -0.1389708 -0.02877733 , , 4 [,1] [,2] [,3]
[1,] 0.0279858 0.9007448 0.1251860
[2,] 0.5111250 -0.4223850 -0.6083399 > apply(x,c(1,2),mean) #以第1及第2维为基础,沿第3方向压成平面
[,1] [,2] [,3]
[1,] 0.01790675 0.01413214 -0.2336942
[2,] 0.17291831 0.23199563 -0.3625262 > apply(x,c(1,3),mean)
[,1] [,2] [,3] [,4]
[1,] -0.4548941 -0.7266532 0.561368 0.3513056
[2,] 0.5149192 -0.4711373 0.185935 -0.1732000 > apply(x,c(2,3),mean)
[,1] [,2] [,3] [,4]
[1,] -0.6501471 -0.08085267 0.8430945 0.2695554
[2,] 0.7513434 -1.09444509 0.5961773 0.2391799
[3,] -0.0111585 -0.62138791 -0.3183173 -0.2415770

4-2 R语言函数 apply的更多相关文章

  1. R语言函数化学习笔记6

    R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...

  2. R语言函数化学习笔记3

    R语言函数化学习笔记3 R语言常用的一些命令函数 1.getwd()查看当前R的工作目录 2.setwd()修改当前工作目录 3.str()可以输出指定对象的结构(类型,位置等),同理还有class( ...

  3. R语言函数化编程笔记2

    R语言函数化编程笔记2 我学过很多的编程语言,可以我写的代码很啰嗦,一定是我太懒了.或许是基础不牢地动山摇 1.为什么要学函数 函数可以简化编程语言,减少重复代码或者说面向对象的作用 2.函数 2.1 ...

  4. R语言函数化编程笔记1

    R语言函数化编程笔记1 notes:有一个不错的网站叫做stack overflow,有问题可以从上面找或者搜索答案,会有大佬相助. 在github上面可以找到很多R的扩展包,如果自己额修改被接受,那 ...

  5. R语言函数总结(转)

    R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...

  6. r语言 函数

    R语言实际上是函数的集合,用户可以使用base,stats等包中的基本函数,也可以自己编写函数完成一定的功能.但是初学者往往认为编写R函数十分困难,或者难以理解.这里对如何编写R函数进行简要的介绍. ...

  7. 【R笔记】R语言函数总结

    R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...

  8. 【转】R语言函数总结

    原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头, ...

  9. R语言︱函数使用技巧(循环、if族/for、switch、repeat、ifelse、stopifnot)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 后续加更内容: 应用一:if族有哪些成员呢?- ...

随机推荐

  1. tomcat服务器访问网址组成

    运行tomcat服务器,其他设备访问的网址组成为: http://内网IP:端口/项目名字/网页名字.jsp

  2. 手把手教你写一个java的orm(一)

    写之前的说明 其实吧. 这个东西已经写好了,地址在:https://github.com/hjx601496320/JdbcPlus 这系列文章算是我写的过程的总结吧.(恩系列,说明我可能会写好久,╮ ...

  3. java设计模式-----19、迭代模式

    概念: Iterator模式也叫迭代模式,是行为模式之一,它把对容器中包含的内部对象的访问委让给外部类,使用Iterator(遍历)按顺序进行遍历访问的设计模式. 迭代模式使用比较少,JDK集合也提供 ...

  4. 无效的列类型:getTimestamp not implemented for class oracle.jdbc.driver.T4CNumberAccessor

    错误信息: 无效的列类型:getTimestamp not implemented for class oracle.jdbc.driver.T4CNumberAccessor 错误原因:经过排查发现 ...

  5. ul制作导航菜单

    首先上图,最终效果: HTML代码: <!DOCTYPE html><html> <head> <meta charset="utf-8" ...

  6. 润乾配置连接kingbase(金仓)数据库

     问题背景 客户根据项目的不同,使用润乾连接的数据库类型各种各样,此文针对前几日使用润乾设计器连接kingbase金仓数据库做一个说明. kingbase金仓数据库是一款国产数据库,操作方式和配置 ...

  7. 一:JavaWeb和Tomcat的安装

    1.Java Web 是java技术用来解决相关web互联网领域的技术总和. 2.Servlet是Java Servlet的简称,称为小服务程序或服务器连接器,用Java编写的服务器端程序 3.JSP ...

  8. Android Viewpager+Fragment实现滑动标签页

    ViewPager 结合Fragment实现一个Activity里包含多个可滑动的标签页,每个标签页可以有独立的布局及响应. 主页布局 <?xml version="1.0" ...

  9. DDL为什么不能rollback?

    转自 http://blog.csdn.net/dba_waterbin/article/details/8621367 在Oracle中DDL语句将转化为对数据字典表的DML语句:比如,一个简单的修 ...

  10. [WinCE | VS2008 | Solution] VS2008 building WinCE projects taking a long time

    1. Open C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.CompactFramework.Common.targets 2. Find pa ...