题目链接:

https://nanti.jisuanke.com/t/17115

题意:

询问硬币K次,正面朝上次数为偶数。

思路:

dp[i][0] = 下* dp[i-1][0] + 上*dp[i-1][1] (满足条件的)

dp[i][1]= 上*dp[i-1][0] + 下*dp[i-1][1] (不满足条件的)

矩阵优化这个DP

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
struct Matrix{
LL a[2][2];
void set1(){
memset(a, 0, sizeof(a));
}
void set2(){
set1();
for(int i=0; i<2; i++) a[i][i]=1;
}
};
Matrix operator*(const Matrix &a, const Matrix &b){
Matrix res;
res.set1();
for(int i=0; i<2; i++){
for(int j=0; j<2; j++){
for(int k=0; k<2; k++){
res.a[i][j] = (res.a[i][j] + a.a[i][k]*b.a[k][j]%mod)%mod;
}
}
}
return res;
}
Matrix qsm(Matrix a, LL n){
Matrix res;
res.set2();
while(n){
if(n&1) res = res*a;
a = a*a;
n /= 2;
}
return res;
}
LL qsmrev(LL a, LL n){
LL ret = 1;
while(n){
if(n&1) ret=ret*a%mod;
a=a*a%mod;
n/=2;
}
return ret;
} int main()
{
int T;
scanf("%d", &T);
while(T--){
LL p, q, k;
scanf("%lld %lld %lld", &p,&q,&k);
LL up = q*qsmrev(p, mod-2)%mod;
LL down = (p-q)*qsmrev(p, mod-2)%mod;
Matrix a, b;
a.set1();
a.a[0][0]=down;
a.a[1][0]=up;
if(k==1){
printf("%lld\n", a.a[0][0]);
}
else{
b.a[0][0]=down, b.a[0][1]=up;
b.a[1][0]=up, b.a[1][1]=down;
a = qsm(b, k-1)*a;
printf("%lld\n", a.a[0][0]%mod);
}
}
return 0;
}

2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂的更多相关文章

  1. HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)

    HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: ...

  2. HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂

    先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...

  3. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  4. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  5. ICPC 2018 徐州赛区网络赛

    ACM-ICPC 2018 徐州赛区网络赛  去年博客记录过这场比赛经历:该死的水题  一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进.     D. Easy Math 题意:   ...

  6. 2017 ACM/ICPC(西安)赛后总结

    早上8:00的高铁,所以不得不6点前起床,向火车站赶……到达西安后已经是中午,西工大距离西安北站大概3小时车程的距离,只好先解决午饭再赶路了……下午3.30的热身赛,一行人在3.35左右赶到了赛场,坐 ...

  7. Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)

    参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...

  8. [刷题]ACM/ICPC 2016北京赛站网络赛 第1题 第3题

    第一次玩ACM...有点小紧张小兴奋.这题目好难啊,只是网赛就这么难...只把最简单的两题做出来了. 题目1: 代码: //#define _ACM_ #include<iostream> ...

  9. 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit    1000 ms Memory li ...

随机推荐

  1. 【刷题】BZOJ 3262 陌上花开

    Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量. 定义一朵花A比另一朵花B要美 ...

  2. 【刷题】BZOJ 5008 方师傅的房子

    Description 方师傅来到了一个二维平面.他站在原点上,觉得这里风景不错,就建了一个房子.这个房子是n个点的凸多边形 ,原点一定严格在凸多边形内部.有m个人也到了这个二维平面.现在你得到了m个 ...

  3. 洛谷 P1357 花园 解题报告

    P1357 花园 题目描述 小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\).他的环形花园每天都会换一个新花样,但他的花园都不 ...

  4. Andrioid Studio生成jar, aar包

    在Android Studio中对一个自己库进行生成操作时将会同时生成*.jar与*.aar文件.分别存储位置:*.jar:库/build/intermediates/bundles/debug(re ...

  5. 解题:POI 2006 PRO-Professor Szu

    题面 这个题是比较套路的做法啦,建反图后缩点+拓扑排序嘛,对于所有处在$size>=2$的SCC中的点都是无限解(可以一直绕) 然后注意统计的时候的小细节,因为无限解/大解也要输出,所以我们把这 ...

  6. 解题:洛谷2257 YY的GCD

    题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...

  7. bzoj 2428: [HAOI2006]均分数据 && bzoj 3680 : 吊打XXX 模拟退火

    每次把元素随便扔随机一个初始解,退火时每次随机拿一个元素扔到随机一个集合里,当温度高时因为状态不稳定扔到那个元素和最小的里边. 如果新解优,更新ans. 把原式拆一下,就可以用int存了. bzoj ...

  8. Docker Macvlan

    参考博客:https://blog.csdn.net/daye5465/article/details/77412619 一.Macvlan 交换机的vlan是根据端口来划分的,如果一个PC接入vla ...

  9. (转)Python中的generator详解

    本文转自:http://www.cnblogs.com/xybaby/p/6322376.html 作者:xybaby 注:本文在原文基础上做了一点点修改,仅仅作为个人理解与记忆,建议直接查看原文. ...

  10. CoreDNS配置kubernetes作为后端

    概述 coredns之所以如此名声大噪,就是因为从kubernetes1.9开始引入,作为kubernetes内部服务发现的默认dns.毫无疑问kubernetes是coredns的后端之一,所以我们 ...