洛咕 P4528 [CTSC2008]图腾


神题orz。

先约定abcd表示\(1\leq A<B<C<D\leq n\),而且\(y_a,y_b,y_c,y_d\)的排名正好是\(a,b,c,d\)的方案数

那么所求就是

1324-1243-1432

=(1x2x-1423)-(14xx-1423)-(12xx-1234)

(其中有x的表示排名任意,但是不能重复)

=1x2x-14xx-12xx+1234

=1x2x-1xxx+13xx+1234

预处理\(L,R\),\(L_i=\sum_{j<i}[y_j<y_i],R_i=\sum_{j>i}[y_j<y_i]\),可以用树状数组处理

(可以看出,\(L_i+R_i=y_i-1\),可以只求\(L_i\)就行了;\(n-i-R_i=\sum_{j>i}[y_j>y_i]\),这是等一下要用到的性质)

分别看怎么求:

1x2x:枚举2的位置\(i\),那么右边有\(n-i-R_i\)中选法,左边要满足\(j<k<i,y_j<y_i,y_k>y_i\),1放在j,x放在k的位置

若只考虑\(y_j<y_i\),有\(L_i*(i-1)\)种选法;那么多算了\(j<k,y_k<y_i\)的和\(j\geq k\)的

\(j<k,y_k<y_i\)的方案数是\(C_{L_i}^2\)

\(j>k\)的方案数,因为此时对\(k\)的限制只有\(k\leq j\),所以对每个\(j\)都可以取\([1,j]\),所以就是\(\sum_{p<i,y_p<y_i}p\)

1xxx:很容易,就是\(\sum C_{n-i-R_i}^3\)

13xx:枚举3,那么4有\(n-i-R_i\)种选法,1和2要满足\(j<i<k,y_j<y_k<y_i\)

只考虑\(y_j<y_i,y_k<y_i,j<i\),有\(L_i(y_i-1)\)种选法,需要减去的是\(k\leq i\)的和\(y_j\geq y_k\)的

\(k\leq i\)的就是\(C_{L_i}^2\)

\(y_j>y_k\)的,此时对\(k\)的限制只有\(y_k\leq y_j\),所以对每个\(j\)都可以取所有\(y<y_j\)的位置,就是\(\sum_{p<i,y_p<y_i}y_p\)

1234:枚举3,后面的就是\(n-i-R_i\),前面如果2确定了放在\(j\)位置,1的放法就是\(L_j\),答案是\(\sum_{i} (n-i-R_i)(\sum_{j<i,y_j<y_i}L_j)\),树状数组直接做

完结撒FA(逃

#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 16777216
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
ll n,p[200010],L[200010],R[200010];
int t[200010];
il vd inc(int&x,int y){x+=y;x%=mod;}
il vd upd(int p,int d){while(p<=n)inc(t[p],d),p+=p&-p;}
il int query(int p){int ret=0;while(p)inc(ret,t[p]),p-=p&-p;return ret;}
int main(){
n=gi();
for(int i=1;i<=n;++i)p[i]=gi();
for(int i=1;i<=n;++i)L[i]=query(p[i]),R[i]=p[i]-1-L[i],upd(p[i],1);
memset(t,0,sizeof t);
int ans=0;
for(int i=1;i<=n;++i){
int x=n-i-R[i];
ans=(ans-(1ll*x*(x-1)*(x-2)/6)%mod+mod)%mod;//1xxx
}
for(int i=1;i<=n;++i)ans=(ans+(n-i-R[i])*query(p[i]))%mod,upd(p[i],L[i]);//1234
memset(t,0,sizeof t);
for(int i=1;i<=n;++i)ans=(ans+(L[i]*(i-1)-query(p[i])-L[i]*(L[i]-1)/2)*(n-i-R[i])%mod+mod)%mod,upd(p[i],i);//1x2x
memset(t,0,sizeof t);
for(int i=n;i;--i)ans=(ans+(query(p[i])-R[i]*(R[i]+1)/2)*(n-i-R[i])%mod+mod)%mod,upd(p[i],p[i]);//13xx
printf("%d\n",ans);
return 0;
}

洛咕 P4528 [CTSC2008]图腾的更多相关文章

  1. 洛咕3312 [SDOI2014]数表

    洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...

  2. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  3. 洛咕 P2336 [SCOI2012]喵星球上的点名

    洛咕 P2336 [SCOI2012]喵星球上的点名 先求出SA和height,一个点名串对应的就是一段区间,还有很多个点,就转化成了 有很多个区间,很多个点集,对每个区间计算和多少个点集有交,对每个 ...

  4. 洛咕 P4131 [WC2005]友好的生物

    洛咕 P4131 [WC2005]友好的生物 首先可以发现\(C\)是没有用的,可以乘进所有的权值里面做 考虑没有最后一维的限制,那么两个生物的友好值就是 \(\sum_{i=1}^k|a_i-b_i ...

  5. 洛咕P3250 [HNOI2016]网络 整体二分

    这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就 ...

  6. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  7. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  8. 洛咕 P3306 [SDOI2013]随机数生成器

    洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...

  9. bzoj1145[CTSC2008]图腾

    传送门 虽然是远古时期的ctsc,但是果然还是ctsc啊 前置芝士:树状数组 这个题最开始的思路很好想,由于之前写过一个类似处理的题,所以这个题我一开始就想到了思路. 首先,我们可以尝试讲图腾表示为x ...

随机推荐

  1. 简单解析Spring核心IOC容器原理

    将大体流程解析了一边,具体可以看源代码一个方法一个方法的跟下 XmlBeanFactory的功能是建立在DefaultListableBeanFactory这个基本容器的基础上的,并在这个基本容器的基 ...

  2. ARC下block使用情况

    ARC与MRC的block有着一些区别,笔记整理ARC的block,仅仅是自己参考的笔记,详情请参考 http://www.cnbluebox.com/?p=255 在开始之前,请新建一个Model类 ...

  3. Sharepoint 2013 多服务器域的目录服务器和搜索服务的配置

    一般而言,大部分的sharepoint的管理工作均可以通过Centrlal Admin完成,可惜这个操作不得不要用powershell. 假如Webfront服务器叫 WebServer 目录服务器叫 ...

  4. Java 的字符串,String、StringBuffer、StringBuilder 有什么区别?

    String 是 Java 语言非常基础和重要的类,提供了构造和管理字符串的各种基本逻辑.它是典型的 Immutable 类,被声明成为 final class,所有属性也都是 final 的.也由于 ...

  5. Django在admin模块中显示auto_now_add=True或auto_now=True的时间类型列

    转载自: http://www.tuicool.com/articles/ZryE7f 在Django如果model中的列定义了auto_now_add或auto_now属性,那么这种列不会在admi ...

  6. 超简单,centos7安装docker

    1.在centos7上直接yum安装docker [root@localhost ~]# yum install docker 2.启动docker [root@localhost ~]#servic ...

  7. chrome的uget扩展程序红色 Unable to connect with uget-integrator问题

    我们根据网上的教程在ubuntu16.04中安装下载工具uget+aria2并配置chrome时,最后重新打开chrome浏览器,发现uget扩展程序是红色的,点开看到”Unable to conne ...

  8. Python自动化之session反解案例

    session反解案例 from django.contrib.sessions.models import Session sess = Session.objects.get(pk='a92d67 ...

  9. 详解 MNIST 数据集

    转自:https://blog.csdn.net/simple_the_best/article/details/75267863 MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它 ...

  10. iRedMail搭建完后登录提示【连接至IMAP服务器失败】(转)

    http://ask.apelearn.com/question/8080(参考) ================搭建步骤如下=====================登录www.net.cn,产品 ...