1 Introduction

A polygon is a closed chain of edges. Several algorithms are available for polygons. For some of those algorithms, it is necessary that the polygon is simple. A polygon is simple if edges don't intersect, except consecutive edges, which intersect in their common vertex.

The following algorithms are available:

  • find the leftmost, rightmost, topmost and bottommost vertex.
  • compute the (signed) area.
  • check if a polygon is simple.
  • check if a polygon is convex.
  • find the orientation (clockwise or counterclockwise)
  • check if a point lies inside a polygon.

All those operations take two forward iterators as parameters in order to describe the polygon. These parameters have a point type as value type.

The type Polygon_2 can be used to represent polygons. Polygons are dynamic. Vertices can be modified, inserted and erased. They provide the algorithms described above as member functions. Moreover, they provide ways of iterating over the vertices and edges.

The Polygon_2 class is a wrapper around a container of points, but little more. Especially, computed values are not cached. That is, when the Polygon_2::is_simple() member function is called twice or more, the result is computed each time anew.

多边形是一个闭合的边的链。多边形有多个算法。对于 其中的一些算法,要求多边形是简单的。多边形是简单的,如果其所有边除相邻边的共同顶点处外都不相交。

下列的算法可用:

  (1)查找最左侧、最右侧、最上方、最下方顶点

  (2)计算()面积

  (3)检查多边形是不是简单的

  (4)检查多边形是不是凸的

  (5)求其方向(顺时针或逆时针)

  (6)检查一个点是否在多边形中

2 Examples

2.1 The Polygon Class

The following example creates a polygon and illustrates the usage of some member functions.

创建一个多边形并使用一些成员函数
File Polygon/Polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <iostream>
 
typedef K::Point_2 Point;
typedef CGAL::Polygon_2<K> Polygon_2;
using std::cout; using std::endl;
 
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
Polygon_2 pgn(points, points+4);
 
// check if the polygon is simple.
cout << "The polygon is " <<
(pgn.is_simple() ? "" : "not ") << "simple." << endl;
 
// check if the polygon is convex
cout << "The polygon is " <<
(pgn.is_convex() ? "" : "not ") << "convex." << endl;
 
return 0;
}
Figure 15.1 A polygon and some points

2.2 Algorithms Operating on Sequences of Points

The following example creates a polygon and illustrates the usage of some global functions that operate on sequences of points.

创建一个多边形并使用全局函数来操纵其点的序列
File Polygon/polygon_algorithms.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_2 Point;
using std::cout; using std::endl;
 
void check_inside(Point pt, Point *pgn_begin, Point *pgn_end, K traits)
{
cout << "The point " << pt;
switch(CGAL::bounded_side_2(pgn_begin, pgn_end,pt, traits)) {
cout << " is inside the polygon.\n";
break;
cout << " is on the polygon boundary.\n";
break;
cout << " is outside the polygon.\n";
break;
}
}
 
int main()
{
Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
 
// check if the polygon is simple.
cout << "The polygon is "
<< (CGAL::is_simple_2(points, points+4, K()) ? "" : "not ")
<< "simple." << endl;
 
check_inside(Point(0.5, 0.5), points, points+4, K());
check_inside(Point(1.5, 2.5), points, points+4, K());
check_inside(Point(2.5, 0), points, points+4, K());
 
return 0;
}

2.3 Polygons in 3D Space

Sometimes it is useful to run a 2D algorithm on 3D data. Polygons may be contours of a 3D object, where the contours are organized in parallel slices, generated by segmentation of image data from a scanner.

In order to avoid an explixit projection on the xy plane, one can use the traits class Projection_traits_xy_3 which is part of the 2D and 3D Linear Geometric Kernel.

有时在3D数据中运行2D算法也是有用的。多边形可能是3D对象的轮廓,它由一个扫描仪通过对图像数据进行分段生成,轮廓以平行的片段组织。
File Polygon/projected_polygon.cpp

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>
 
typedef K::Point_3 Point_3;
 
int main()
{
Point_3 points[4] = { Point_3(0,1,1), Point_3(0,2,1), Point_3(0,2,2), Point_3(0,1,2) };
bool b = CGAL::is_simple_2(points,
points+4,
if (!b){
std::cerr << "Error polygon is not simple" << std::endl;
return 1;
}
return 0;
}

2D Polygons( Poygon) CGAL 4.13 -User Manual的更多相关文章

  1. Algebraic Foundations ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    理解: 本节主要介绍CGAL的代数结构和概念之间的互操作.与传统数论不同,CGAL的代数结构关注于实数轴的“可嵌入”特征.它没有将所有传统数的集合映射到自己的代数结构概念中,避免使用“数的类型”这一术 ...

  2. 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual

    1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...

  3. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  4. 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...

  5. Linear and Quadratic Programming Solver ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Which Programs can be Solved? This package lets you solve convex quadratic programs of the general ...

  6. 3D Spherical Geometry Kernel( Geometry Kernels) CGAL 4.13 -User Manual

    Introduction The goal of the 3D spherical kernel is to offer to the user a large set of functionalit ...

  7. dD Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction This part of the reference manual covers the higher-dimensional kernel. The kernel co ...

  8. Algebraic Kernel ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    1 Introduction Real solving of polynomials is a fundamental problem with a wide application range. T ...

  9. Monotone and Sorted Matrix Search ( Arithmetic and Algebra) CGAL 4.13 -User Manual

    monotone_matrix_search() and sorted_matrix_search() are techniques that deal with the problem of eff ...

随机推荐

  1. 几种TCP连接终止

    在三次连接完成后,accept调用前,客户机发来RST. Berkeley实现将完全在内核中处理,不通知. 而SVR4实现将返回一个错误EPROTO,而POSIX指出应该是ECONNABORTED,后 ...

  2. JavaScript的数据类型和运算符总结

    1.定义变量用关键字 var var a = 1 var b = "abc" 2.javascript脚本每一行要用分号隔开 3.javascript的代码一般放在html代码的最 ...

  3. dede搜索页面上某些标签无法使用

    dede默认的搜索模板是search.htm,但在模板文件中使用{dede:type}{/dede:type}或{dede:flink}{/dede:flink}时,发现标签并没有被解析,显示为空. ...

  4. zeromq学习记录(二)天气更新服务器使用ZMQ_SUB ZMQ_PUB

    /************************************************************** 技术博客 http://www.cnblogs.com/itdef/   ...

  5. ftp sftp vsftp

    ftp  sftp (secure)  是文件传输 协议 vsftp(very secure) 是 ftp 服务端 sftp 是 ssh 的一部分

  6. part1:7-Linux网络配置

    1.虚拟机(Vmware)网络配置 VMware虚拟机对于不同的网络环境提供了三种网卡工作模式: Bridged:网桥模式: 在桥接模式下,计算机A充当路由器与虚拟机之间的“桥”,虚拟机通过计算机A的 ...

  7. linux(rhel) rescue修复详解

    修复linux,先准备好一张安装光盘,光驱安装好后开机,选择从光驱启动.等待安装盘显示操作界面时选择"rescue"选项,如果有光标提示的话,也可以输入:linux rescue进 ...

  8. 2018软工项目UML设计(团队)

    团队信息 队名:火箭少男100 本次作业课上成员 短学号 名 本次作业博客链接 2507 俞辛(临时队长) https://www.cnblogs.com/multhree/p/9821080.htm ...

  9. python之数据类型1

    什么是数据类型及数据类型分类        python中的数据类型 python使用对象模型来存储数据,每一个数据类型都有一个内置的类,每新建一个数据,实际就是在初始化生成一个对象,即所有数据都是对 ...

  10. 一个简单的Linux后门程序的实现

    该程序实质是一个简单的socket编程,在受害方上运行攻击代码(后门进程),通过socket打开一个预设端口,并监听,等待攻击方的链接.一旦攻击方通过网络链接工具试图链接该socket,那么后门进程立 ...