题面

0/1分数规划+树形背包检查

要求$\frac{\sum P_i}{\sum S_i}的最大值,$按照0/1分数规划的做法,二分一个mid之后把式子化成$\sum P_i=\sum S_i*mid$。然后相当于每个点$i$的点权是$P_i-S_i*mid$来做树形背包。

然而我并不太会树形背包=。=

设$dp[i][j]$表示以$i$为根的子树中选出$j$个物品的最优解,然后转移的时候 枚举子树->枚举已经合并好的部分->枚举一棵新子树 来转移

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const double inf=1e9;
int p[N],noww[N],goal[N],siz[N];
double pwr[N],cst[N],val[N],dp[N][N];
int n,k,rd,cnt;
double l,r,mid,ans;
void link(int f,int t)
{
noww[++cnt]=p[f];
goal[cnt]=t,p[f]=cnt;
}
void mark(int nde)
{
siz[nde]=;
for(int i=p[nde];i;i=noww[i])
mark(goal[i]),siz[nde]+=siz[goal[i]];
}
void DFS(int nde)
{
int size=,mini=;
for(int i=;i<=k;i++) dp[nde][i]=-inf;
if(nde) dp[nde][]=val[nde],size++,mini++;
else dp[nde][]=;
for(int i=p[nde];i;i=noww[i])
{
DFS(goal[i]);
for(int j=size;j>=mini;j--)
for(int k=;k<=siz[goal[i]];k++)
dp[nde][j+k]=max(dp[nde][j+k],dp[nde][j]+dp[goal[i]][k]);
size+=siz[goal[i]];
}
}
int main()
{
register int i,j;
scanf("%d%d",&k,&n);
for(i=;i<=n;i++)
{
scanf("%lf%lf%d",&cst[i],&pwr[i],&rd);
link(rd,i),r=max(r,(double)pwr[i]);
}
mark();
for(i=;i<=;i++)
{
mid=(l+r)/;
for(j=;j<=n;j++)
val[j]=pwr[j]-mid*cst[j];
DFS(); (dp[][k]<)?r=mid:l=mid;
}
printf("%.3lf",l);
return ;
}

解题:JSOI 2016 最佳团体的更多相关文章

  1. [JSOI 2016] 最佳团体(树形背包+01分数规划)

    4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2003  Solved: 790[Submit][Statu ...

  2. [JSOI 2016] 最佳团体

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4753 [算法] 很明显的分数规划 可以用树形动态规划(树形背包)检验答案 时间复杂度 ...

  3. 【BZOJ4753】最佳团体(分数规划,动态规划)

    [BZOJ4753]最佳团体(分数规划,动态规划) 题面 BZOJ Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一 ...

  4. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  5. loj#2071. 「JSOI2016」最佳团体

    题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #inclu ...

  6. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  7. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  8. JSOI 2016 扭动的字符串

    JSOI 2016 扭动的字符串 题面描述 给出两个长度为\(n\)的字符串\(A,B\) \(S(i,j,k)\)表示把\(A\)中的\([i,j]\)和\(B\)中的\([j,k]\)拼接起来的字 ...

  9. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

随机推荐

  1. https、ssl、tls协议学习

    一.知识准备 1.ssl协议:通过认证.数字签名确保完整性:使用加密确保私密性:确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.htt ...

  2. nodejs 中jead模板改为ejs

    var app = express(); // view engine setup app.set('views', path.join(__dirname, 'views')); app.set(' ...

  3. md5sum命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/cbbbc/article/details/48563023 前言 在网络传输.设备之间转存.复制大文件等时,可能会出现传输 ...

  4. PHP 抽象类和接口区别

    php中抽象类和接口的区别 1) 概念 面向对象的三大概念:封装,继承,多态 把属性和方法封装起来就是类.      一个类的属性和方法被另外的类复制就是继承,PHP里面的任何类都可以被继承,被继承的 ...

  5. git push remote: User permission denied

    这种错误因为本地保存了一个错误的账号密码,只需要重新编辑成正确的账号密码 直接上方法

  6. 11.16 Daily Scrum

    由于今天是工作小周期的最后一天,今天的主要任务是解决了一周留下的技术方面的难题.一些类似于悬浮窗和进度条的bug修复全部在今天得到了解决,修复了数据库的内存泄露bug,软件的搜索功能的完善也接近尾声. ...

  7. YQCB冲刺周第四天

    上图站立会议 任务看板: 今天的任务:做登录身份的验证,区别普通用户和超级管理员 遇到的困难:中文乱码问题

  8. 分类Category的概念和使用流程

    一.了解 1.分类的概念: category:类别.类目.分类 2.分类的作用: 将1个类中不同方法分到多个不同的文件中存储 可以在不修改原来类的基础上,为这个类扩充一些方法 注意: 分类中只能增加方 ...

  9. 标头 header()函数的用法

    头 (header) 是服务器以 HTTP 协议传 HTML 资料到浏览器前所送出的字串,在标头与 HTML 文件之间尚需空一行分隔. 范例一: 本例使浏览器重定向到 PHP 的官方网站. <? ...

  10. jsp页面has already been called for this response错误解决方法。

    创建验证码的jsp页面提示错误:has already been called for this response <%@ page contentType="image/jpeg&q ...