题目描述

奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶

牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N。

就像任何一个好游戏一样,这样的跳格子游戏也有奖励!第i个格子标有一个数字V_i(-2,000,000,000 <=V_i <= 2,000,000,000)表示这个格子的钱。奶牛们想看看最后谁能得到最多的钱。

规则很简单:

* 每个奶牛从0号格子出发。(0号格子在1号之前,那里没钱)

* 她向N号格子进行一系列的跳跃(也可以不跳),每次她跳到的格子最多可以和前一个落脚的格子差K格(2 <= K <= N)(比方说,当前在1号格,K=2, 可以跳到2号和3号格子)

*在任何时候,她都可以选择回头往0号格子跳,直到跳到0号格子。另外,除了以上规则之外,

回头跳的时候还有两条规则:

*不可以跳到之前停留的格子。

*除了0号格子之外,她在回来的时候,停留的格子必须是恰巧过去的时候停留的某个格子的前一格(当然,也可以跳过某些过去…

(必须最后要跳回来)

题解:
往回跳是一个挺麻烦的事情。

发现,如果不是一下回到0的话,一定会在某一个位置i的前一个位置作为回来的停留

因为不能记录来的路上哪些点没有走过,

所以我们还可以过去的时候,就把回来的路径上的点贡献统计上。

似乎只能dp了、

由于有负数,所以不是停留的格子越多越好。

为了避免选择i的前一个格子是否要停留,

我们设f[i],表示,从0跳到i,往后再跳一些(距离i不能超过k-1),然后返回到i-1,然后再回到0的最优收益。

就是说,我们钦定i-1是返回的路径上第一个回来的点。

而且,我们每跳k个距离,就必须留下一个点作为回来的点。

那么,f[i]=max(f[j]+s[i-2]-s[j]+v[i]+v[i-1]) (i-k<=j<=i-2)就是从j一步跳到i

s[k]表示,前k个位置,大于0的数的前缀和。因为不超过k距离下,随便收钱必然找正数 。

j的范围很经典了,简单又自然地,单调队列优化一下f就可以

统计答案的时候,并不是mx(f[i])

因为i还可以往后捞点钱,再回到i-1,所以,f[i]再加上s[min(i+k-1,n)]-s[i]

然后一个锅就是:

我们的讨论有一个大前提。"如果不是一下回到0的话,一定会在某一个位置i的前一个位置作为回来的停留"

那么如果最优解是跳过去,然后一步回到0,就挂了。

所以,f[0]=s[min(0+k),n]也要取进ans的mx里。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=(1LL*<<);
const int N=+;
int n,k;
ll f[N];
ll v[N],s[N];
int q[N],l,r;
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%lld",&v[i]);
s[i]=s[i-]+(v[i]>)*v[i];
}
l=,r=;
f[]=v[];
q[++r]=;
for(int i=;i<=n;i++){
while(l<=r&&q[l]<i-k) l++;
f[i]=f[q[l]]-s[q[l]]+v[i]+v[i-]+s[i-];
while(l<=r&&(f[q[r]]-s[q[r]])<=(f[i-]-s[i-])) r--;
q[++r]=i-;
}
ll ans=;
for(int i=;i<=n;i++) ans=max(ans,f[i]+s[min(n,i+k-)]-s[i]);
ans=max(ans,f[]+s[min(n,k)]-s[]);
printf("%lld",ans);
return ;
}

总结:

像这种题,确实看起来无从下手,主要是回来的路径怎么考虑上?

但是利用回来的路径必须是i的前面一个位置,所以,可以钦定回来的位置,然后就可以dp了。

注意边界的细节问题。

[USACO10OPEN]牛跳房子Cow Hopscotch的更多相关文章

  1. 【洛谷】2990:[USACO10OPEN]牛跳房子Cow Hopscotch【单调队列优化DP】

    P2990 [USACO10OPEN]牛跳房子Cow Hopscotch 题目描述 The cows have reverted to their childhood and are playing ...

  2. 洛谷 P3120 [USACO15FEB]牛跳房子(金)Cow Hopscotch (Gold)

    P3120 [USACO15FEB]牛跳房子(金)Cow Hopscotch (Gold) 就像人类喜欢跳格子游戏一样,FJ的奶牛们发明了一种新的跳格子游戏.虽然这种接近一吨的笨拙的动物玩跳格子游戏几 ...

  3. Cow Hopscotch

    Cow Hopscotch 题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have inv ...

  4. bzoj3939 【USACO 2015 FEB GOLD 】cow hopscotch

    Description 就像人类喜欢玩"跳房子"的游戏,农民约翰的奶牛已经发明了该游戏的一个变种自己玩.由于笨拙的动物体重近一吨打,牛跳房子几乎总是以灾难告终,但这是没有阻止奶牛几 ...

  5. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  6. bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic

    P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...

  7. bzoj1650 / P2855 [USACO06DEC]河跳房子River Hopscotch / P2678 (noip2015)跳石头

    P2855 [USACO06DEC]河跳房子River Hopscotch 二分+贪心 每次二分最小长度,蓝后检查需要去掉的石子数是否超过限制. #include<iostream> #i ...

  8. P3014 [USACO11FEB]牛线Cow Line && 康托展开

    康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...

  9. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

随机推荐

  1. Codeforces1151E,F | 553Div2 | 瞎讲报告

    传送链接 E. Number of Components 当时思博了..一直在想对于\([1,r]\)的联通块和\([1,l-1]\)的联通块推到\([l,r]\)的联通块...我真的是傻了..这题明 ...

  2. PLSQL Developer windows 64位连接数据库的问题

    使用PLSQL Developer 工具连接到数据库进行开发,目前主流windows 系统都是64位操作系统,而PLSQL Developer  只有32位程序,所以在连接数据库上遇到一些问题. PL ...

  3. 字幕字体滚动插件——scroxt.js

    README scroxt.js Overview scroxt.js是一个字体滚动的插件库,包括视频弹幕滚动,直播弹幕.直播弹幕强制模式.单行水平左右滚动.文本垂直滚动上下,用于简单快捷生成滚动字体 ...

  4. 看oracle的sid

    ps -ef|grep pmon 可以从进程名字里看到 也可以通过 sqlplus / as sysdbashow parameter instance_name

  5. OO第四次作业-对前三次作业总结

    第一次作业由于直接没怎么学过java,全靠一星期速成,前几天看了java的语法,但是因为光看没有打代码,学习效果并不是特别好.由面向过程转向面向对象,不是特别清楚该怎么办,虽然写的是两个类,但实际上是 ...

  6. java实验五实验报告

    一.实验内容 Cmp传输与加解密 结对编程,一人服务器,一人客户端,服务器向客户端发送经RSA加密的密钥和用密钥加密的密文(使用DES算法),客户端负责接收加密后的密钥和密文,并解密得出明文. 二.实 ...

  7. My Sql数据库设置环境变量和字符集

    一.踩坑背景 之前开发中一直用的是sql  server 数据库,最近接到公司一个老的项目,用的my sql数据库做的,功能做了一大部分,现在客户要求对原程序和数据库进行服务器的迁移工作.产品经理给出 ...

  8. Sprint计划(未完成)

    1.需求预计:http://www.cnblogs.com/OuZeBo/p/4529320.html 2.功能设计: 3.Spring计划:

  9. windows redis 后台运行

    1. 进入 DOS窗口2. 在进入Redis的安装目录3. 输入:redis-server --service-install redis.windows.conf --loglevel verbos ...

  10. git学习-综合性文章

    文章:[转载]理解 Git 分支管理最佳实践 首先介绍了git各种分支: