其实我觉得这种题目风格很像今天省选第三轮D1T1

都是在一个算法模型上去探索规律;

首先我们要做一遍最大流毫无疑问

第一问看起来很好想,只要是满流边就可以了?

错,反例不难找到

如:1--->2 flow 4

2--->3 flow 4

3--->1 flow 4

1--->4 flow 4

很有可能我们在找增广路的时候,走了多余的回路(1-2-3-1),导致前3条边也是满流边,但不会出现在最小割方案中

所以我们考虑用tarjan对残留网络缩点;

对于第一问,要求是满流边且起点终点在不同集合

第二问,显然在满足第一问的前提下,起点终点分属源点汇点集合

 const inf=;
type node=record
       from,point,next,flow:longint;
     end; var edge:array[..] of node;
    ans1,ans2:array[..] of longint;
    p,cur,pre,numh,h,low,dfn,be,st:array[..] of longint;
    tot,d,r,x,y,z,i,j,n,m,s,t,len:longint;
    v,f:array[..] of boolean; function min(a,b:longint):longint;
  begin
    if a>b then exit(b) else exit(a);
  end; procedure add(x,y,f:longint);
  begin
    inc(len);
    edge[len].point:=y;
    edge[len].from:=x;
    edge[len].flow:=f;
    edge[len].next:=p[x];
    p[x]:=len;
  end; procedure sap;
  var u,i,j,tmp,neck,q:longint;
  begin
    u:=s;
    numh[]:=n;
    while h[s]<n do
    begin
      if u=t then
      begin
        i:=s;
        neck:=inf;
        while i<>t do
        begin
          j:=cur[i];
          if neck>edge[j].flow then
          begin
            neck:=edge[j].flow;
            q:=i;
          end;
          i:=edge[j].point;
        end;
        i:=s;
        while i<>t do
        begin
          j:=cur[i];
          dec(edge[j].flow,neck);
          inc(edge[j xor ].flow,neck);
          i:=edge[j].point;
        end;
        u:=q;
      end;
      q:=-;
      i:=p[u];
      while i<>- do
      begin
        j:=edge[i].point;
        if (edge[i].flow>) and (h[u]=h[j]+) then
        begin
          q:=i;
          break;
        end;
        i:=edge[i].next;
      end;
      if q<>- then
      begin
        cur[u]:=q;
        pre[j]:=u;
        u:=j;
      end
      else begin
        dec(numh[h[u]]);
        if numh[h[u]]= then exit;
        tmp:=n;
        i:=p[u];
        while i<>- do
        begin
          j:=edge[i].point;
          if edge[i].flow> then tmp:=min(tmp,h[j]);
          i:=edge[i].next;
        end;
        h[u]:=tmp+;
        inc(numh[h[u]]);
        if u<>s then u:=pre[u];
      end;
    end;
  end; procedure tarjan(x:longint);
  var i,y:longint;
  begin
    v[x]:=true;
    f[x]:=true;
    inc(r);
    inc(d);
    st[r]:=x;
    dfn[x]:=d;
    low[x]:=d;
    i:=p[x];
    while i<>- do
    begin
      y:=edge[i].point;
      if edge[i].flow> then
      begin
        if not v[y] then
        begin
          tarjan(y);
          low[x]:=min(low[x],low[y]);
        end
        else if f[y] then
          low[x]:=min(low[x],low[y]);
      end;
      i:=edge[i].next;
    end;
    if low[x]=dfn[x] then
    begin
      inc(tot);
      while st[r+]<>x do
      begin
        y:=st[r];
        f[y]:=false;
        be[y]:=tot;
        dec(r);
      end;
    end;
  end; begin
  readln(n,m,s,t);
  len:=-;
  fillchar(p,sizeof(p),);
  for i:= to m do
  begin
    readln(x,y,z);
    add(x,y,z);
    add(y,x,);
  end;
  sap;
  for i:= to n do
    if not v[i] then
    begin
      r:=;
      d:=;
      tarjan(i);
    end;
  i:=;
  while i<=len do
  begin
    if (edge[i].flow=) then
    begin
      x:=edge[i].from;
      y:=edge[i].point;
      if be[x]<>be[y] then
      begin
        ans1[i div +]:=;
        if (be[x]=be[s]) and (be[y]=be[t]) or (be[x]=be[t]) and (be[y]=be[s]) then
          ans2[i div +]:=;
      end;
    end;
    i:=i+;
  end;
  for i:= to m do
    writeln(ans1[i],' ',ans2[i]);
end.

bzoj1797的更多相关文章

  1. 【bzoj1797】 Ahoi2009—Mincut 最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=1797 (题目链接) 题意 求一条边是否可能在一个最小割集中,以及这条边是否一定在最小割集中. Sol ...

  2. 【BZOJ1797】[AHOI2009]最小割(网络流)

    [BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还 ...

  3. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  4. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  5. BZOJ1797:[AHOI2009]最小割(最小割)

    Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...

  6. 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan

    题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...

  7. 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割

    结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...

  8. [BZOJ1797][AHOI2009]最小割Mincut

    bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...

  9. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

随机推荐

  1. 用pelican搭建完美博客

    前面有文章介绍本站采用了Python编写的Pelican静态生成博客系统, 之所以没有使用当前很火的Jekyll, 是因为它是Ruby编写, 而我又对Ruby没有啥兴趣, 所以还是选择了使用了我熟悉的 ...

  2. 用PL0语言求Fibonacci数列前m个中偶数位的数

    程序说明:求Fibonacci数列前m个中偶数位的数: 这是编译原理作业,本打算写 求Fibonacci数列前m个数:写了半天,不会写,就放弃了: 程序代码如下: var n1,n2,m,i; pro ...

  3. android中的4种点击事件

    四种点击事件     (1)采用内部类的方式去实现OnClickListener      (2)匿名内部类     (3)当前类imp OnClickListener      (4)onclick ...

  4. JS 页面打印

    var hkey_root, hkey_path, hkey_key hkey_root = "HKEY_CURRENT_USER" hkey_path = "\\Sof ...

  5. java Object类

    常用的共性内容 1,实现任何对象的比较,一般比较同一种对象的比较 Object1.equals(Object obj);等同于Object1 == obj: 只有当两个引用指向同一个对象时方法返回tr ...

  6. CSS3 基本知识

    1.CSS3 简介 CSS 指层叠样式表 (Cascading Style Sheets),用于控制网页的样式和布局,CSS3 是最新的 CSS 标准. 在网页制作时采用层叠样式表,可以有效的对页面的 ...

  7. NOSQL之【Redis学习:配置说明】

    # yes:后台运行:no:不是后台运行(老版本默认) daemonize yes # redis的进程文件 pidfile /var/run/redis.pid # 端口 port # bind_a ...

  8. Python prettytable的使用方法

    Python prettytable的使用方法 prettytable可以整齐地输出一个表格信息: +-----------+------+------------+----------------- ...

  9. 【WPF】路由事件

    总结WPF中的路由事件,我将学到的内容分为四部分来逐渐掌握 第一部分:wpf中内置的路由事件 以Button的Click事件来说明内置路由事件的使用 XAML代码: <Window x:Clas ...

  10. Java 内存区域

    Java虚拟机锁管理的内存包括以下几个运行时数据区域: 1.程序计数器: 程序计数器是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里,字节码解释器工作时 ...