Sum It Up
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6682   Accepted: 3475

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
#include<stdio.h>
#include<string.h>
#define MAX 1100
int n,m,k,ok;
int a[MAX],b[MAX];
void dfs(int pos,int tot,int k)
{
int i,j;
if(tot==n)
{
ok=1;
for(j=0;j<k;j++)
{
if(!j)
printf("%d",b[j]);
else
printf("+%d",b[j]);
}
printf("\n");
return ;
}
for(i=pos;i<m;i++)
{
b[k]=a[i];
dfs(i+1,tot+a[i],k+1);
while(a[i]==a[i+1])//去重
++i;
}
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&m),n|m)
{
for(i=0;i<m;i++)
scanf("%d",&a[i]);
k=0;
ok=0;
printf("Sums of %d:\n",n);
dfs(0,0,0);
if(!ok)
printf("NONE\n");
}
return 0;
}

  

poj 1564 Sum It Up【dfs+去重】的更多相关文章

  1. POJ 1564 Sum It Up (DFS+剪枝)

                                                                                                       ...

  2. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  5. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  6. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. POJ 1564 经典dfs

    1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...

  9. (深搜)Sum It Up -- poj --1564

    链接: http://poj.org/problem?id=1564 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88230#probl ...

随机推荐

  1. UITabBar的隐藏

    方式一: // 重写导航控制器的push方法 - (void)pushViewController:(UIViewController *)viewController animated:(BOOL) ...

  2. O-C相关04:类方法的概述与定义和调用

    类方法的概述与定义和调用 1, 类方法的概述 类方法(class method)在其他编程语言中常常称为静态方法(例如 Java 或 C# 等). 与实例方法不同的是,类方法只需要使用类名即可调用, ...

  3. html-----004

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. PHP临时文件session的分级存储与定期删除

    在Windows上PHP默认的Session服务端文件存放在C:\WINDOWS\Temp下,如果说并发访问很大或者 session建立太多,目录下就会存在大量类似sess_xxxxxx的sessio ...

  5. [lua]尝试一种Case语法糖

    function CaseT(arg) function proxy(caller) caller.yield(r) end -- proxy return function (cond) if (c ...

  6. 网站开发常用jQuery插件总结(二)弹出层插件Lightbox_me

    网站开发过程中,为了增加网站交互效果,我们有时需要在当前页面弹出诸如登陆.注册.设置等窗口.而这些窗口就是层,弹出的窗口就是弹出层.jQuery中弹出层插件很多,但有些在html5+css3浏览器下, ...

  7. FileStream读写文件流

    用FileStream 读取文件流并显示给文件内容 string p = @"C:\Users\Administrator\Desktop\1.txt"; FileStream f ...

  8. 【python】只执行普通除法:添加 from __future__ import division

    from __future__ import division 注意future前后是两个下划线

  9. SQL的四种语言和数据库范式

    1. SQL的四种语言 DDL(Data Definition Language)数据库定义语言 CREATE ALTER DROP TRUNCATE COMMENT RENAME DML(Data ...

  10. C# 数据结构 线性表(顺序表 链表 IList 数组)

    线性表 线性表是最简单.最基本.最常用的数据结构.数据元素 1 对 1的关系,这种关系是位置关系. 特点 (1)第一个元素和最后一个元素前后是没有数据元素,线性表中剩下的元素是近邻的,前后都有元素. ...