Sum It Up
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6682   Accepted: 3475

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
#include<stdio.h>
#include<string.h>
#define MAX 1100
int n,m,k,ok;
int a[MAX],b[MAX];
void dfs(int pos,int tot,int k)
{
int i,j;
if(tot==n)
{
ok=1;
for(j=0;j<k;j++)
{
if(!j)
printf("%d",b[j]);
else
printf("+%d",b[j]);
}
printf("\n");
return ;
}
for(i=pos;i<m;i++)
{
b[k]=a[i];
dfs(i+1,tot+a[i],k+1);
while(a[i]==a[i+1])//去重
++i;
}
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&m),n|m)
{
for(i=0;i<m;i++)
scanf("%d",&a[i]);
k=0;
ok=0;
printf("Sums of %d:\n",n);
dfs(0,0,0);
if(!ok)
printf("NONE\n");
}
return 0;
}

  

poj 1564 Sum It Up【dfs+去重】的更多相关文章

  1. POJ 1564 Sum It Up (DFS+剪枝)

                                                                                                       ...

  2. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  5. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  6. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. POJ 1564 经典dfs

    1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...

  9. (深搜)Sum It Up -- poj --1564

    链接: http://poj.org/problem?id=1564 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88230#probl ...

随机推荐

  1. 使用sprintf打印float并控制小数位数时引起的问题

    最近在做项目中发现一个Bug,直接把进程搞死,查了一下,居然是一个最不起眼的地方导致的,在此记录一下. 先看下面代码 #include <iostream> #include <st ...

  2. [学习笔记]设计模式之Proxy

    为方便读者,本文已添加至索引: 设计模式 学习笔记索引 写在前面 “魔镜啊魔镜,谁是这个世界上最美丽的人?” 每到晚上,女王都会问魔镜相同的问题(见Decorator模式).这是她还曾身为女巫时留下的 ...

  3. SlidesJS 3.0.4 在手机上遇到的一些问题及解决办法

    SlidesJS 3.0.4 http://slidesjs.com 在手机上遇到的一些问题及解决办法 1.手机上打开有sliderjs的页面后, 切换到别的页面再回来时, sliderjs部分不能滑 ...

  4. Apache Virtual Include

    2.目录支持includes:     <Directory   />             Options   None             //不支持includes       ...

  5. 无线端web开发学习总结

    无线web开发之前要做一些准备工作:一.必需的reset样式库1.其中的重点是盒模型box-sizing:由原来pc端的content-box改为border-box. *, *:before, *: ...

  6. 配置nginx支持thinkphp框架

    因为nginx本身没有支持pathinfo,所以无法使用thinkphp框架,不过我们可以在配置里进行修改使其能够正常使用thinkphp. 1.修改配置支持pathinfo vi /etc/ngin ...

  7. PKM(personal knowledge management)

    内化 一般含义 一般上,当涉及道德行为时,内化是巩固和植入某人信念.态度和价值的长期过程,而这一过程的实现牵扯到精神分析或行为方法的慎重使用. 当改变道德行为时,一组新的信念.态度和价值代替或适应于所 ...

  8. .Net Remoting浅释

    面试的时候,被问到.Net Remoting 工作方式及它和Web Service的区别,在此做个整理,顺便回顾一下. .Net Remoteing: 我们可以认为.Net Remoting是一种分布 ...

  9. WebApi(三)-属性路由 自定义访问路径

    启用属性路由: 1.在WebApiConfig中加入如下代码: //属性路由 config.MapHttpAttributeRoutes();

  10. PHP-mac下的配置及运行

    Here's another option, from the guys from liip, here. This is a PHP package that comes pre-built for ...