构造R^n子空间W一组正交基的算法:格拉姆-施密特方法。

《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法的更多相关文章

  1. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理

    这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...

  2. 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换

    两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...

  3. 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间

    在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...

  4. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题

    最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...

  5. 《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念

    基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的 ...

  6. 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则

    计算线性方程组唯一解的克拉默法则:

  7. 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换

    承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...

  8. 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式

    这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...

  9. 《Linear Algebra and Its Applications》-chaper2-矩阵代数-分块矩阵

    分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分 ...

随机推荐

  1. SqlServer中的merge操作,相当地风骚

    今天在一个存储过程中看见了merge这个关键字,第一个想法是,这个是配置管理中的概念吗,把相邻两次的更改合并到一起.后来在technet上搜索发现别有洞天,原来是另外一个sql关键字,t-sql的语法 ...

  2. .NET下的加密解密大全(1): 哈希加密

    .NET有丰富的加密解密API库供我们使用,本博文总结了.NET下的Hash散列算法,并制作成简单的DEMO,希望能对大家有所帮助. MD5[csharp]using System; using Sy ...

  3. How to hanganalyze and systemstate dumps

    Oracle support request hang analysis and system state dumps when rasing SR. One 10.1 or higher versi ...

  4. html-----006

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. swift官方文档中的函数闭包是怎么理解的?

    官方文档中的16页: numbers.map({ (number: Int) -> Int in let result = * number return result }) 不知道这个怎么用, ...

  6. php 函数 array_slice

    array_slice array_slice -- 从数组中取出一段 <?php$input = array("a", );      // returns "c ...

  7. 关于【键鼠<局域网>共享软件:synergy】install

    Installation 另外,本人在centos6.5环境下作为server运行时,遇到一个问题,synergy1.5随着系统升级居然变成了1.3X,所以如果遇到类似问题,请您先用 rpm -qa ...

  8. 浅谈Exchange 2013开发-如何操作邮件的附件

    因为项目中客户有一个的要求,所以这个Exchange前段时间搞的我很是头疼,没接触过这个东西,但是现在看来,纸老虎一个.希望我的经验可以帮助初次接触它的人少走一些弯路! 简单介绍一下:客户要求在自己的 ...

  9. C#中获得汉字的首拼音(简化版)

    利用汉字在计算机里面的编码来得到汉字的首拼音: static public string GetChineseSpell(string strText) { int len = strText.Len ...

  10. 什么是image crop?

    一直对image crop很困惑,总算是看到了一篇描述较为简洁的说明:图像crop就是指从图像中移除不需要的信息,只保留需要的部分